forked from RandyMcMillan/bitcoinfuzz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compiler.cpp
1028 lines (952 loc) · 41.5 KB
/
compiler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <string>
#include <vector>
#include <unordered_map>
#include <script/script.h>
#include <script/miniscript.h>
#include <span.h>
#include <util/spanparsing.h>
#include <util/strencodings.h>
#include "compiler.h"
#include <assert.h>
const CompilerContext COMPILER_CTX;
namespace {
using Node = miniscript::NodeRef<CompilerContext::Key>;
using Fragment = miniscript::Fragment;
using miniscript::operator"" _mst;
template<typename... Args>
Node MakeNode(Args&&... args) { return miniscript::MakeNodeRef<CompilerContext::Key>(miniscript::internal::NoDupCheck{}, std::forward<Args>(args)...); }
struct Policy {
enum class Type {
NONE,
PK_K,
OLDER,
AFTER,
HASH160,
HASH256,
RIPEMD160,
SHA256,
AND,
OR,
THRESH
};
Type node_type = Type::NONE;
std::vector<Policy> sub;
std::vector<unsigned char> data;
std::vector<CompilerContext::Key> keys;
std::vector<uint32_t> prob;
uint32_t k = 0;
~Policy() = default;
Policy(const Policy& x) = delete;
Policy& operator=(const Policy& x) = delete;
Policy& operator=(Policy&& x) = default;
Policy(Policy&& x) = default;
Policy() {}
Policy(Type nt) : node_type(nt) {}
Policy(Type nt, uint32_t kv) : node_type(nt), k(kv) {}
Policy(Type nt, std::vector<unsigned char>&& dat) : node_type(nt), data(std::move(dat)) {}
Policy(Type nt, std::vector<unsigned char>&& dat, uint32_t kv) : node_type(nt), data(std::move(dat)), k(kv) {}
Policy(Type nt, std::vector<Policy>&& subs) : node_type(nt), sub(std::move(subs)) {}
Policy(Type nt, std::vector<CompilerContext::Key>&& key) : node_type(nt), keys(std::move(key)) {}
Policy(Type nt, std::vector<Policy>&& subs, std::vector<uint32_t>&& probs) : node_type(nt), sub(std::move(subs)), prob(std::move(probs)) {}
Policy(Type nt, std::vector<Policy>&& subs, uint32_t kv) : node_type(nt), sub(std::move(subs)), k(kv) {}
Policy(Type nt, std::vector<CompilerContext::Key>&& key, uint32_t kv) : node_type(nt), keys(std::move(key)), k(kv) {}
bool operator()() const { return node_type != Type::NONE; }
};
std::vector<unsigned char> Hash(const Span<const char>& in, size_t len)
{
auto unhex = ParseHex(std::string(in.begin(), in.end()));
if (unhex.size() == len) return unhex;
return {};
}
Policy Parse(Span<const char>& in);
Policy ParseProb(Span<const char>& in, uint32_t& prob) {
prob = 0;
while (in.size() && in[0] >= ('0' + (prob == 0)) && in[0] <= '9') {
prob = std::min<uint32_t>(prob * 10 + (in[0] - '0'), std::numeric_limits<uint16_t>::max());
in = in.subspan(1);
}
if (prob) {
if (in.size() == 0 || in[0] != '@') return Policy(Policy::Type::NONE);
in = in.subspan(1);
} else {
prob = 1;
}
return Parse(in);
}
Policy Parse(Span<const char>& in) {
using namespace spanparsing;
auto expr = Expr(in);
if (Func("pk", expr)) {
auto key = COMPILER_CTX.FromString(expr.begin(), expr.end());
if (key) return {Policy::Type::PK_K, Vector(std::move(*key))};
return {};
} else if (Func("after", expr)) {
uint64_t num;
if (!ParseUInt64(std::string(expr.begin(), expr.end()), &num)) {
return Policy::Type::NONE;
}
if (num >= 1 && num < 0x80000000UL) {
return {Policy::Type::AFTER, uint32_t(num)};
}
return {};
} else if (Func("older", expr)) {
uint64_t num;
if (!ParseUInt64(std::string(expr.begin(), expr.end()), &num)) {
return Policy::Type::NONE;
}
if (num >= 1 && num < 0x80000000UL) {
return {Policy::Type::OLDER, uint32_t(num)};
}
return {};
} else if (Func("sha256", expr)) {
auto hash = Hash(expr, 32);
if (hash.size()) return {Policy::Type::SHA256, std::move(hash)};
return {};
} else if (Func("ripemd160", expr)) {
auto hash = Hash(expr, 20);
if (hash.size()) return {Policy::Type::RIPEMD160, std::move(hash)};
return {};
} else if (Func("hash256", expr)) {
auto hash = Hash(expr, 32);
if (hash.size()) return {Policy::Type::HASH256, std::move(hash)};
return {};
} else if (Func("hash160", expr)) {
auto hash = Hash(expr, 20);
if (hash.size()) return {Policy::Type::HASH160, std::move(hash)};
return {};
} else if (Func("or", expr)) {
std::vector<Policy> sub;
std::vector<uint32_t> prob;
uint32_t p;
sub.emplace_back(ParseProb(expr, p));
if (!sub.back()()) return {};
prob.push_back(p);
while (expr.size()) {
if (!Const(",", expr)) return {};
sub.emplace_back(ParseProb(expr, p));
if (!sub.back()()) return {};
prob.push_back(p);
}
return {Policy::Type::OR, std::move(sub), std::move(prob)};
} else if (Func("and", expr)) {
std::vector<Policy> sub;
sub.emplace_back(Parse(expr));
if (!sub.back()()) return {};
while (expr.size()) {
if (!Const(",", expr)) return {};
sub.emplace_back(Parse(expr));
if (!sub.back()()) return {};
}
return {Policy::Type::AND, std::move(sub)};
} else if (Func("thresh", expr)) {
auto arg = Expr(expr);
uint32_t count;
if (!ParseUInt32(std::string(arg.begin(), arg.end()), &count)) {
return {};
}
if (count < 1) return {};
std::vector<Policy> sub;
while (expr.size()) {
if (!Const(",", expr)) return {};
sub.emplace_back(Parse(expr));
if (!sub.back()()) return {};
}
if (sub.size() > 100 || count > sub.size()) return {};
return {Policy::Type::THRESH, std::move(sub), count};
}
return {};
}
Policy Parse(const std::string& in) {
try {
Span<const char> sp(in.data(), in.size());
Policy ret = Parse(sp);
if (sp.size()) return Policy(Policy::Type::NONE);
return ret;
} catch (const std::logic_error&) {
return Policy(Policy::Type::NONE);
}
}
struct Strat {
enum class Type {
JUST_0, JUST_1,
PK_K, MULTI,
OLDER, AFTER,
HASH160, HASH256, SHA256, RIPEMD160,
AND, OR, ANDOR, THRESH,
WRAP_AS, WRAP_C, WRAP_D, WRAP_V, WRAP_J, WRAP_N, // Several kinds of wrappers that don't change semantics
ALTERNATIVES, // Every subgraph is a separate compilation strategy; try each once
CACHE, // sub[0] is the dependency; sub[1] and higher are (possibly self-referential) improvements to try repeatedly until all of them stop improving
};
Type node_type;
std::vector<const Strat*> sub;
std::vector<CompilerContext::Key> keys;
std::vector<unsigned char> data;
int64_t k = 0;
double prob;
explicit Strat(Type nt) : node_type(nt) {}
explicit Strat(Type nt, int64_t kv) : node_type(nt), k(kv) {}
explicit Strat(Type nt, std::vector<unsigned char> dat) : node_type(nt), data(std::move(dat)) {}
explicit Strat(Type nt, std::vector<unsigned char> dat, int64_t kv) : node_type(nt), data(std::move(dat)), k(kv) {}
explicit Strat(Type nt, std::vector<const Strat*> subs) : node_type(nt), sub(std::move(subs)) {}
explicit Strat(Type nt, std::vector<CompilerContext::Key> key) : node_type(nt), keys(std::move(key)) {}
explicit Strat(Type nt, std::vector<const Strat*> subs, double probs) : node_type(nt), sub(std::move(subs)), prob(probs) {}
explicit Strat(Type nt, std::vector<const Strat*> subs, int64_t kv, double probs) : node_type(nt), sub(std::move(subs)), k(kv), prob(probs) {}
explicit Strat(Type nt, std::vector<const Strat*> subs, int64_t kv) : node_type(nt), sub(std::move(subs)), k(kv) {}
explicit Strat(Type nt, std::vector<CompilerContext::Key> key, int64_t kv) : node_type(nt), keys(std::move(key)), k(kv) {}
};
typedef std::vector<std::unique_ptr<Strat>> StratStore;
template <typename... X>
const Strat* MakeStrat(StratStore& store, X&&... args) {
Strat* ret = new Strat(std::forward<X>(args)...);
store.emplace_back(ret);
return ret;
}
template <typename... X>
Strat* MakeMutStrat(StratStore& store, X&&... args) {
Strat* ret = new Strat(std::forward<X>(args)...);
store.emplace_back(ret);
return ret;
}
const Strat* ComputeStrategy(const Policy& node, std::unordered_map<const Policy*, const Strat*>& cache, StratStore& store);
const Strat* GetStrategy(const Policy& node, std::unordered_map<const Policy*, const Strat*>& cache, StratStore& store) {
auto it = cache.find(&node);
if (it != cache.end()) return it->second;
auto ret = ComputeStrategy(node, cache, store);
if (ret) cache.emplace(&node, ret);
return ret;
}
static StratStore STRAT_GLOBAL;
static const Strat* STRAT_FALSE = MakeStrat(STRAT_GLOBAL, Strat::Type::CACHE, Vector(MakeStrat(STRAT_GLOBAL, Strat::Type::JUST_0)));
static const Strat* STRAT_TRUE = MakeStrat(STRAT_GLOBAL, Strat::Type::CACHE, Vector(MakeStrat(STRAT_GLOBAL, Strat::Type::JUST_1)));
const Strat* ComputeStrategy(const Policy& node, std::unordered_map<const Policy*, const Strat*>& cache, StratStore& store) {
std::vector<const Strat*> strats;
switch (node.node_type) {
case Policy::Type::NONE:
return {};
case Policy::Type::PK_K:
strats.push_back(MakeStrat(store, Strat::Type::PK_K, node.keys));
break;
case Policy::Type::OLDER:
strats.push_back(MakeStrat(store, Strat::Type::OLDER, node.k));
break;
case Policy::Type::AFTER:
strats.push_back(MakeStrat(store, Strat::Type::AFTER, node.k));
break;
case Policy::Type::HASH256:
strats.push_back(MakeStrat(store, Strat::Type::HASH256, node.data));
break;
case Policy::Type::HASH160:
strats.push_back(MakeStrat(store, Strat::Type::HASH160, node.data));
break;
case Policy::Type::SHA256:
strats.push_back(MakeStrat(store, Strat::Type::SHA256, node.data));
break;
case Policy::Type::RIPEMD160:
strats.push_back(MakeStrat(store, Strat::Type::RIPEMD160, node.data));
break;
case Policy::Type::AND: {
if (node.sub.size() != 2) return {};
const auto left = GetStrategy(node.sub[0], cache, store);
const auto right = GetStrategy(node.sub[1], cache, store);
if (!left || !right) return {};
strats.push_back(MakeStrat(store, Strat::Type::AND, Vector(left, right))); // and(X,Y)
strats.push_back(MakeStrat(store, Strat::Type::ANDOR, Vector(std::move(left), std::move(right), STRAT_FALSE), 1.0)); // or(and(X,Y),0)
break;
}
case Policy::Type::OR: {
if (node.sub.size() != 2) return {};
if (node.prob[0] + node.prob[1] < node.prob[0]) return {};
double prob = ((double)node.prob[0]) / (node.prob[0] + node.prob[1]);
const auto left = GetStrategy(node.sub[0], cache, store);
const auto right = GetStrategy(node.sub[1], cache, store);
if (!left || !right) return {};
if (node.sub[0].node_type == Policy::Type::AND && node.sub[0].sub.size() == 2) {
const auto leftleft = GetStrategy(node.sub[0].sub[0], cache, store);
const auto leftright = GetStrategy(node.sub[0].sub[1], cache, store);
if (!leftleft || !leftright) return {};
strats.push_back(MakeStrat(store, Strat::Type::ANDOR, Vector(std::move(leftleft), std::move(leftright), right), prob));
}
if (node.sub[1].node_type == Policy::Type::AND && node.sub[1].sub.size() == 2) {
const auto rightleft = GetStrategy(node.sub[1].sub[0], cache, store);
const auto rightright = GetStrategy(node.sub[1].sub[1], cache, store);
if (!rightleft || !rightright) return {};
strats.push_back(MakeStrat(store, Strat::Type::ANDOR, Vector(std::move(rightleft), std::move(rightright), left), 1.0 - prob));
}
strats.push_back(MakeStrat(store, Strat::Type::ANDOR, Vector(left, STRAT_TRUE, right), prob));
strats.push_back(MakeStrat(store, Strat::Type::OR, Vector(std::move(left), std::move(right)), prob));
break;
}
case Policy::Type::THRESH: {
std::vector<const Strat*> subs;
std::transform(node.sub.begin(), node.sub.end(), std::back_inserter(subs), [&](const Policy& x){ return GetStrategy(x, cache, store); });
for (const auto& s : subs) {
if (!s) return {};
}
if (node.sub.size() <= 20 && std::all_of(node.sub.begin(), node.sub.end(), [&](const Policy& x){ return x.node_type == Policy::Type::PK_K; })) {
std::vector<CompilerContext::Key> keys;
for (const Policy& x : node.sub) {
keys.push_back(x.keys[0]);
}
strats.push_back(MakeStrat(store, Strat::Type::MULTI, std::move(keys), node.k));
}
if (node.k == 1 || node.k == node.sub.size()) {
while (subs.size() > 1) {
auto rep = MakeStrat(store, node.k == 1 ? Strat::Type::OR : Strat::Type::AND, Vector(*(subs.rbegin() + 1), subs.back()), 1.0 / subs.size());
subs.pop_back();
subs.pop_back();
subs.push_back(MakeStrat(store, Strat::Type::CACHE, Vector(rep)));
}
strats.push_back(subs[0]);
}
strats.push_back(MakeStrat(store, Strat::Type::THRESH, subs, node.k, (double)node.k / subs.size()));
break;
}
}
if (strats.size() != 1) {
auto sub = std::move(strats);
strats.push_back(MakeStrat(store, Strat::Type::ALTERNATIVES, std::move(sub)));
}
auto ret = MakeMutStrat(store, Strat::Type::CACHE, std::move(strats));
ret->sub.push_back(MakeStrat(store, Strat::Type::WRAP_C, std::vector<const Strat*>{ret}));
ret->sub.push_back(MakeStrat(store, Strat::Type::WRAP_V, std::vector<const Strat*>{ret}));
ret->sub.push_back(MakeStrat(store, Strat::Type::AND, std::vector<const Strat*>{ret, STRAT_TRUE}));
ret->sub.push_back(MakeStrat(store, Strat::Type::WRAP_N, std::vector<const Strat*>{ret}));
ret->sub.push_back(MakeStrat(store, Strat::Type::WRAP_D, std::vector<const Strat*>{ret}));
ret->sub.push_back(MakeStrat(store, Strat::Type::WRAP_J, std::vector<const Strat*>{ret}));
ret->sub.push_back(MakeStrat(store, Strat::Type::OR, std::vector<const Strat*>{ret, STRAT_FALSE}, 1.0));
ret->sub.push_back(MakeStrat(store, Strat::Type::WRAP_AS, std::vector<const Strat*>{ret}));
return ret;
}
struct CostPair {
double sat;
double nsat;
constexpr CostPair(double s, double n) : sat(s), nsat(n) {}
};
struct Result {
Node node;
CostPair pair;
double cost;
int Compare(double other_cost, const Node& other_node) const {
if (cost < other_cost) return -1;
if (cost > other_cost) return 1;
if (node->ScriptSize() > other_node->ScriptSize()) return -1;
if (node->ScriptSize() < other_node->ScriptSize()) return 1;
return 0;
}
Result(Node&& in_node, const CostPair& in_pair, double in_cost) : node(std::move(in_node)), pair(in_pair), cost(in_cost) {}
};
double inline Mul(double coef, double val) {
if (coef == 0) return 0;
return coef * val;
}
typedef std::pair<miniscript::Type, miniscript::Type> TypeFilter; // First element is required type properties; second one is which one we care about
constexpr TypeFilter ParseFilter(const char *c, size_t len, size_t split) {
return c[split] == '/' ? TypeFilter{operator"" _mst(c, split), operator"" _mst(c + split + 1, len - split - 1)} :
split == len ? TypeFilter{operator"" _mst(c, len), ""_mst} : ParseFilter(c, len, split + 1);
}
constexpr TypeFilter operator"" _mstf(const char* c, size_t len) { return ParseFilter(c, len, 0); }
struct Compilation {
std::vector<Result> results;
double p, q;
int seq = 0;
Compilation(double p_, double q_) : p(p_), q(q_) {}
Compilation(const Compilation&) = default;
Compilation(Compilation&&) = default;
Compilation& operator=(const Compilation&) = default;
Compilation& operator=(Compilation&&) = default;
~Compilation() = default;
double Cost(const CostPair& pair, const Node& node) {
return node->ScriptSize() + Mul(p, pair.sat) + Mul(q, pair.nsat);
}
void Add(const CostPair& pair, Node node) {
/* We cannot use IsSaneSubexpression(), as it includes CheckDuplicates which we don't evaluate for
* interim expressions here. */
if (!(node->ValidSatisfactions() && node->IsNonMalleable() && node->CheckTimeLocksMix())) return;
auto new_typ = node->GetType();
double cost = Cost(pair, node);
if (cost > 10000) return;
for (const Result& x : results) {
auto old_typ = x.node->GetType();
if (old_typ << new_typ && (x.Compare(cost, node) <= 0)) return; // There is an existing element that's a subtype and better. New item is not useful.
}
// We're at least better in some conditions.
results.erase(std::remove_if(results.begin(), results.end(), [&](const Result& x){
auto old_typ = x.node->GetType();
return (new_typ << old_typ && (x.Compare(cost, node) >= 0)); // Delete existing types which are supertypes of the new type and worse.
}), results.end());
// Add the new item.
results.emplace_back(std::move(node), pair, cost);
++seq;
}
void Add(const Result& x) { Add(x.pair, x.node); }
template<typename... X>
void Add(const CostPair& pair, X&&... args) { Add(pair, MakeNode(std::forward<X>(args)...)); }
std::vector<Result> Query(const TypeFilter typ) const {
std::map<miniscript::Type, Result> rm;
for (const Result& x : results) {
if (x.node->GetType() << typ.first) {
auto masked = x.node->GetType() & typ.second;
auto r = rm.emplace(masked, x);
if (!r.second && x.Compare(r.first->second.cost, r.first->second.node) < 0) r.first->second = x;
}
}
std::vector<Result> ret;
for (const auto& elem : rm) ret.push_back(std::move(elem.second));
return ret;
}
};
struct CompilationKey {
const Strat* strat;
double p, q;
bool operator<(const CompilationKey& other) const {
if (strat < other.strat) return true;
if (strat > other.strat) return false;
if (p < other.p) return true;
if (p > other.p) return false;
return q < other.q;
}
bool operator==(const CompilationKey& other) const {
if (strat != other.strat) return false;
if (p != other.p) return false;
return q == other.q;
}
};
const Compilation& GetCompilation(const Strat* strat, double p, double q, std::map<CompilationKey, Compilation>& cache);
void Compile(const Strat* strat, Compilation& compilation, std::map<CompilationKey, Compilation>& cache);
constexpr double INF = std::numeric_limits<double>::infinity();
CostPair CalcCostPair(Fragment nt, const std::vector<const Result*>& s, double l) {
double r = 1.0 - l;
if (nt != Fragment::OR_B && nt != Fragment::OR_D && nt != Fragment::OR_C && nt != Fragment::OR_I && nt != Fragment::THRESH && nt != Fragment::ANDOR && nt != Fragment::MULTI) {
assert(l == 0);
}
switch (nt) {
case Fragment::PK_K: return {73, 1};
case Fragment::PK_H: return {107, 35};
case Fragment::OLDER:
case Fragment::AFTER:
return {0, INF};
case Fragment::HASH256:
case Fragment::HASH160:
case Fragment::SHA256:
case Fragment::RIPEMD160:
return {33, 33};
case Fragment::WRAP_A:
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_N:
return s[0]->pair;
case Fragment::WRAP_D: return {2 + s[0]->pair.sat, 1};
case Fragment::WRAP_V: return {s[0]->pair.sat, INF};
case Fragment::WRAP_J: return {s[0]->pair.sat, 1};
case Fragment::JUST_1: return {0, INF};
case Fragment::JUST_0: return {INF, 0};
case Fragment::AND_V: return {s[0]->pair.sat + s[1]->pair.sat, INF};
case Fragment::AND_B: return {s[0]->pair.sat + s[1]->pair.sat, s[0]->pair.nsat + s[1]->pair.nsat};
case Fragment::OR_B:
return {Mul(l, s[0]->pair.sat + s[1]->pair.nsat) + Mul(r, s[0]->pair.nsat + s[1]->pair.sat), s[0]->pair.nsat + s[1]->pair.nsat};
case Fragment::OR_D:
case Fragment::OR_C:
return {Mul(l, s[0]->pair.sat) + Mul(r, s[0]->pair.nsat + s[1]->pair.sat), s[0]->pair.nsat + s[1]->pair.nsat};
case Fragment::OR_I:
return {Mul(l, s[0]->pair.sat + 2) + Mul(r, s[1]->pair.sat + 1), std::min(2 + s[0]->pair.nsat, 1 + s[1]->pair.nsat)};
case Fragment::ANDOR:
return {Mul(l, s[0]->pair.sat + s[1]->pair.sat) + Mul(r, s[0]->pair.nsat + s[2]->pair.sat), s[0]->pair.nsat + s[2]->pair.nsat};
case Fragment::MULTI: return CostPair{1.0 + l * 73.0, 1.0 + l};
case Fragment::THRESH: {
double sat = 0.0, nsat = 0.0;
for (const auto& sub : s) {
sat += sub->pair.sat;
nsat += sub->pair.nsat;
}
return CostPair{Mul(l, sat) + Mul(r, nsat), nsat};
}
}
throw std::runtime_error("Computing CostPair of unknown fragment");
}
std::pair<std::vector<double>, std::vector<double>> GetPQs(Fragment nt, double p, double q, double l, int m) {
static const std::pair<std::vector<double>, std::vector<double>> NONE;
double r = 1.0 - l;
switch (nt) {
case Fragment::JUST_1:
case Fragment::JUST_0:
case Fragment::PK_K:
case Fragment::PK_H:
case Fragment::MULTI:
case Fragment::OLDER:
case Fragment::AFTER:
case Fragment::HASH256:
case Fragment::HASH160:
case Fragment::SHA256:
case Fragment::RIPEMD160:
return NONE;
case Fragment::WRAP_A:
case Fragment::WRAP_S:
case Fragment::WRAP_C:
case Fragment::WRAP_N:
return {{p}, {q}};
case Fragment::WRAP_D:
case Fragment::WRAP_V:
case Fragment::WRAP_J:
return {{p}, {0}};
case Fragment::AND_V:
case Fragment::AND_B:
return {{p, p}, {q, q}};
case Fragment::OR_B: return {{l*p, r*p}, {r*p + q, l*p + q}};
case Fragment::OR_D: return {{l*p, r*p}, {r*p + q, q}};
case Fragment::OR_C: return {{l*p, r*p}, {r*p, 0}};
case Fragment::OR_I: return {{l*p, r*p}, {m == 0 ? q : 0, m == 1 ? q : 0}};
case Fragment::ANDOR: return {{l*p, l*p, r*p}, {q + r*p, 0, q}};
case Fragment::THRESH: return {std::vector<double>(m, p * l), std::vector<double>(m, q + p * r)};
}
assert(false);
return NONE;
}
typedef std::vector<std::vector<TypeFilter>> TypeFilters;
const TypeFilters& GetTypeFilter(Fragment nt) {
static const TypeFilters FILTER_NO{{}};
static const TypeFilters FILTER_WRAP_A{{"B/udfems"_mstf}};
static const TypeFilters FILTER_WRAP_S{{"Bo/udfemsx"_mstf}};
static const TypeFilters FILTER_WRAP_C{{"K/onde"_mstf}};
static const TypeFilters FILTER_WRAP_D{{"V/zfms"_mstf}};
static const TypeFilters FILTER_WRAP_V{{"B/zonmsx"_mstf}};
static const TypeFilters FILTER_WRAP_J{{"Bn/oufms"_mstf}};
static const TypeFilters FILTER_WRAP_N{{"B/zondfems"_mstf}};
static const TypeFilters FILTER_AND_V{
{"V/nzoms"_mstf, "B/unzofmsx"_mstf},
{"V/nsoms"_mstf, "K/unzofmsx"_mstf},
{"V/nzoms"_mstf, "V/unzofmsx"_mstf}
};
static const TypeFilters FILTER_AND_B{{"B/zondfems"_mstf, "W/zondfems"_mstf}};
static const TypeFilters FILTER_OR_B{{"Bde/zoms"_mstf, "Wde/zoms"_mstf}};
static const TypeFilters FILTER_OR_D{{"Bdue/zoms"_mstf, "B/zoudfems"_mstf}};
static const TypeFilters FILTER_OR_C{{"Bdue/zoms"_mstf, "V/zoms"_mstf}};
static const TypeFilters FILTER_OR_I{
{"V/zudfems"_mstf, "V/zudfems"_mstf},
{"B/zudfems"_mstf, "B/zudfems"_mstf},
{"K/zudfems"_mstf, "K/zudfems"_mstf}
};
static const TypeFilters FILTER_ANDOR{
{"Bdue/zoms"_mstf, "B/zoufms"_mstf, "B/zoudfems"_mstf},
{"Bdue/zoms"_mstf, "K/zoufms"_mstf, "K/zoudfems"_mstf},
{"Bdue/zoms"_mstf, "V/zoufms"_mstf, "V/zoudfems"_mstf}
};
switch (nt) {
case Fragment::JUST_1:
case Fragment::JUST_0:
case Fragment::PK_K:
case Fragment::PK_H:
case Fragment::MULTI:
case Fragment::OLDER:
case Fragment::AFTER:
case Fragment::HASH256:
case Fragment::HASH160:
case Fragment::SHA256:
case Fragment::RIPEMD160:
return FILTER_NO;
case Fragment::WRAP_A: return FILTER_WRAP_A;
case Fragment::WRAP_S: return FILTER_WRAP_S;
case Fragment::WRAP_C: return FILTER_WRAP_C;
case Fragment::WRAP_D: return FILTER_WRAP_D;
case Fragment::WRAP_V: return FILTER_WRAP_V;
case Fragment::WRAP_J: return FILTER_WRAP_J;
case Fragment::WRAP_N: return FILTER_WRAP_N;
case Fragment::AND_V: return FILTER_AND_V;
case Fragment::AND_B: return FILTER_AND_B;
case Fragment::OR_B: return FILTER_OR_B;
case Fragment::OR_C: return FILTER_OR_C;
case Fragment::OR_D: return FILTER_OR_D;
case Fragment::OR_I: return FILTER_OR_I;
case Fragment::ANDOR: return FILTER_ANDOR;
case Fragment::THRESH: break;
}
assert(false);
return FILTER_NO;
}
template<typename... Args>
void AddInner(Compilation& compilation, std::map<CompilationKey, Compilation>& cache, Fragment nt, const std::vector<const Result*>& resp, double prob, Args&&... args) {
std::vector<Node> subs;
for (const Result* res : resp) subs.push_back(res->node);
compilation.Add(CalcCostPair(nt, resp, prob), nt, std::move(subs), std::forward<Args>(args)...);
}
template<typename... Args>
void Add(Compilation& compilation, std::map<CompilationKey, Compilation>& cache, Fragment nt, const std::vector<const Strat*>& s, double prob, int m, Args&&... args) {
auto pqs = GetPQs(nt, compilation.p, compilation.q, prob, m);
auto filter = GetTypeFilter(nt);
std::vector<const Result*> resp;
resp.resize(s.size());
for (size_t j = 0; j < filter.size(); ++j) {
std::vector<std::vector<Result>> res;
uint32_t num_comb = 1;
assert(s.size() == filter[j].size());
for (size_t i = 0; i < s.size(); ++i) {
const Compilation& subcomp = GetCompilation(s[i], pqs.first[i], pqs.second[i], cache);
res.push_back(subcomp.Query(filter[j][i]));
num_comb *= res.back().size();
}
for (uint32_t comb = 0; comb < num_comb; ++comb) {
uint32_t c = comb;
for (size_t i = 0; i < s.size(); ++i) {
resp[i] = &res[i][c % res[i].size()];
c /= res[i].size();
}
if (comb + 1 == num_comb) {
AddInner(compilation, cache, nt, resp, prob, std::forward<Args>(args)...);
} else {
AddInner(compilation, cache, nt, resp, prob, args...);
}
}
}
}
const Compilation& GetCompilation(const Strat* strat, double p, double q, std::map<CompilationKey, Compilation>& cache) {
assert(strat->node_type == Strat::Type::CACHE);
CompilationKey key{strat, p, q};
auto it = cache.find(key);
if (it != cache.end()) {
assert(it->second.p == p);
assert(it->second.q == q);
return it->second;
}
Compilation new_entry(p, q);
assert(strat->sub.size() > 0);
Compile(strat->sub[0], new_entry, cache);
auto it2 = cache.emplace(key, std::move(new_entry));
assert(it2.second);
Compilation &result = it2.first->second;
if (strat->sub.size() > 1) {
size_t last = 1, pos = 1;
do {
int prevseq = result.seq;
Compile(strat->sub[pos], result, cache);
if (result.seq != prevseq) last = pos;
++pos;
if (pos == strat->sub.size()) pos = 1;
} while (pos != last);
}
return result;
}
void Compile(const Strat* strat, Compilation& compilation, std::map<CompilationKey, Compilation>& cache) {
double p = compilation.p, q = compilation.q;
switch (strat->node_type) {
case Strat::Type::ALTERNATIVES:
for (const auto& x : strat->sub) {
Compile(x, compilation, cache);
}
return;
case Strat::Type::CACHE: {
const Compilation& sub = GetCompilation(strat, p, q, cache);
for (const Result& x : sub.results) {
compilation.Add(x);
}
return;
}
case Strat::Type::JUST_0:
Add(compilation, cache, Fragment::JUST_0, strat->sub, 0, 0);
return;
case Strat::Type::JUST_1:
Add(compilation, cache, Fragment::JUST_1, strat->sub, 0, 0);
return;
case Strat::Type::AFTER:
case Strat::Type::OLDER: {
Add(compilation, cache, strat->node_type == Strat::Type::OLDER ? Fragment::OLDER : Fragment::AFTER, strat->sub, 0, 0, strat->k);
return;
}
case Strat::Type::HASH160: {
Add(compilation, cache, Fragment::HASH160, strat->sub, 0, 0, strat->data);
return;
}
case Strat::Type::HASH256: {
Add(compilation, cache, Fragment::HASH256, strat->sub, 0, 0, strat->data);
return;
}
case Strat::Type::RIPEMD160: {
Add(compilation, cache, Fragment::RIPEMD160, strat->sub, 0, 0, strat->data);
return;
}
case Strat::Type::SHA256: {
Add(compilation, cache, Fragment::SHA256, strat->sub, 0, 0, strat->data);
return;
}
case Strat::Type::PK_K: {
Add(compilation, cache, Fragment::PK_K, strat->sub, 0, 0, strat->keys);
Add(compilation, cache, Fragment::PK_H, strat->sub, 0, 0, strat->keys);
return;
}
case Strat::Type::MULTI:
Add(compilation, cache, Fragment::MULTI, strat->sub, strat->k, 0, strat->keys, strat->k);
return;
case Strat::Type::WRAP_AS:
Add(compilation, cache, Fragment::WRAP_A, strat->sub, 0, 0);
Add(compilation, cache, Fragment::WRAP_S, strat->sub, 0, 0);
return;
case Strat::Type::WRAP_C:
Add(compilation, cache, Fragment::WRAP_C, strat->sub, 0, 0);
return;
case Strat::Type::WRAP_D:
Add(compilation, cache, Fragment::WRAP_D, strat->sub, 0, 0);
return;
case Strat::Type::WRAP_N:
Add(compilation, cache, Fragment::WRAP_N, strat->sub, 0, 0);
return;
case Strat::Type::WRAP_J:
Add(compilation, cache, Fragment::WRAP_J, strat->sub, 0, 0);
return;
case Strat::Type::WRAP_V:
Add(compilation, cache, Fragment::WRAP_V, strat->sub, 0, 0);
return;
case Strat::Type::AND: {
const auto& sub = strat->sub;
const std::vector<const Strat*> rev{sub[1], sub[0]};
if (q == 0) {
Add(compilation, cache, Fragment::AND_V, sub, 0, 0);
Add(compilation, cache, Fragment::AND_V, rev, 0, 0);
}
Add(compilation, cache, Fragment::AND_B, sub, 0, 0);
Add(compilation, cache, Fragment::AND_B, rev, 0, 0);
return;
}
case Strat::Type::OR: {
const auto& sub = strat->sub;
const std::vector<const Strat*> rev{sub[1], sub[0]};
double l = strat->prob, r = 1.0 - l;
if (q == 0) {
Add(compilation, cache, Fragment::OR_C, sub, l, 0);
Add(compilation, cache, Fragment::OR_C, rev, r, 0);
}
Add(compilation, cache, Fragment::OR_B, sub, l, 0);
Add(compilation, cache, Fragment::OR_B, rev, r, 0);
Add(compilation, cache, Fragment::OR_D, sub, l, 0);
Add(compilation, cache, Fragment::OR_D, rev, r, 0);
Add(compilation, cache, Fragment::OR_I, sub, l, 0);
Add(compilation, cache, Fragment::OR_I, rev, r, 0);
Add(compilation, cache, Fragment::OR_I, sub, l, 1);
Add(compilation, cache, Fragment::OR_I, rev, r, 1);
return;
}
case Strat::Type::ANDOR: {
const auto& sub = strat->sub;
const std::vector<const Strat*> rev{sub[1], sub[0], sub[2]};
double l = strat->prob;
Add(compilation, cache, Fragment::ANDOR, sub, l, 0);
Add(compilation, cache, Fragment::ANDOR, rev, l, 0);
return;
}
case Strat::Type::THRESH: {
auto pqs = GetPQs(Fragment::THRESH, p, q, strat->prob, (int)strat->sub.size());
std::vector<Result> Bs, Ws;
int B_pos = -1;
double cost_diff = -1.0;
for (size_t i = 0; i < strat->sub.size(); ++i) {
const Compilation& comp = GetCompilation(strat->sub[i], pqs.first[i], pqs.second[i], cache);
auto res_B = comp.Query("Bemdu"_mstf);
if (res_B.size() == 0) { return; }
assert(res_B.size() == 1);
Bs.push_back(std::move(res_B[0]));
auto res_W = comp.Query("Wemdu"_mstf);
if (res_W.size() == 0) { return; }
assert(res_W.size() == 1);
Ws.push_back(std::move(res_W[0]));
if (Ws.back().cost - Bs.back().cost > cost_diff) {
cost_diff = Ws.back().cost - Bs.back().cost;
B_pos = i;
}
}
std::vector<const Result*> resp;
resp.push_back(&Bs[B_pos]);
for (size_t i = 0; i < strat->sub.size(); ++i) {
if ((int)i != B_pos) resp.push_back(&Ws[i]);
}
AddInner(compilation, cache, Fragment::THRESH, resp, strat->prob, strat->k);
return;
}
}
}
std::string Disassembler(CScript::const_iterator& it, CScript::const_iterator end, int indent = 0) {
std::string ret;
bool newline = true;
size_t last_newline = 0;
size_t last_space = 0;
while (it != end) {
opcodetype opcode;
std::vector<unsigned char> data;
auto it2 = it;
if (!GetScriptOp(it2, end, opcode, &data)) return ret + " [error]";
if (opcode == OP_ELSE || opcode == OP_ENDIF) break;
it = it2;
if (newline) {
for (int i = 0; i < indent; ++i) ret += " ";
} else {
ret += ' ';
last_space = ret.size() - 1;
}
if (data.size() == 20) {
if (data == std::vector<unsigned char>(20, 0x99)) {
ret += "<h>";
} else if (data[0] == 'P' && data[1] == 'K' && data[2] == 'h') {
while (data.size() && data.back() == 0) data.pop_back();
ret += "<HASH160(" + std::string((const char*)data.data() + 3, data.size() - 3) + ")>";
}
} else if (data.size() == 32 && data == std::vector<unsigned char>(32, 0x88)) {
ret += "<H>";
} else if (data.size() == 33 && data[0] == 2 && data[1] == 'P' && data[2] == 'K' && data[3] == 'b') {
while (data.size() && data.back() == 0) data.pop_back();
ret += "<" + std::string((const char*)data.data() + 4, data.size() - 4) + ">";
} else if (data.size() > 0) {
ret += "<" + HexStr(data) + ">";
} else {
ret += std::string(GetOpName(opcode));
if (opcode == OP_IF || opcode == OP_NOTIF) {
ret += '\n';
ret += Disassembler(it, end, indent + 1);
if (it != end && *it == OP_ELSE) {
for (int i = 0; i < indent; ++i) ret += " ";
ret += std::string(GetOpName(opcodetype(*(it++)))) + '\n';
ret += Disassembler(it, end, indent + 1);
}
if (it != end && *it == OP_ENDIF) {
for (int i = 0; i < indent; ++i) ret += " ";
ret += std::string(GetOpName(opcodetype(*(it++)))) + '\n';
}
last_newline = ret.size();
newline = true;
}
}
if (!newline && ret.size() - last_newline > 80) {
ret[last_space] = '\n';
for (int i = 0; i < indent; ++i) ret.insert(last_space + 1, " ");
last_newline = last_space + 1;
}
newline = (ret.size() == last_newline);
}
if (!newline) ret += '\n';
return ret;
}
/*
std::string DebugNode(const Node& node) {
switch (node->fragment) {
case Fragment::PK_K: return "pk";
case Fragment::PK_H: return "pk_h";
case Fragment::MULTI: return "multi(" + std::to_string(node->k) + " of " + std::to_string(node->keys.size()) + ")";
case Fragment::AFTER: return "after";
case Fragment::OLDER: return "older";
case Fragment::SHA256: return "sha256";
case Fragment::HASH256: return "hash256";
case Fragment::RIPEMD160: return "ripemd160";
case Fragment::HASH160: return "hash160";
case Fragment::JUST_1: return "1";
case Fragment::JUST_0: return "0";
case Fragment::WRAP_C: return "c:";
case Fragment::WRAP_A: return "a:";
case Fragment::WRAP_S: return "s:";
case Fragment::WRAP_V: return "v:";
case Fragment::WRAP_D: return "d:";
case Fragment::WRAP_J: return "j:";
case Fragment::WRAP_N: return "n:";
case Fragment::AND_V: return "and_v";
case Fragment::AND_B: return "and_b";
case Fragment::OR_B: return "or_b";
case Fragment::OR_C: return "or_c";
case Fragment::OR_D: return "or_d";
case Fragment::OR_I: return "or_i";
case Fragment::ANDOR: return "andor";
case Fragment::THRESH: return "thresh(" + std::to_string(node->k) + " of " + std::to_string(node->subs.size()) + ")";
}
assert(false);
return "";
}
void PrintCompilationResult(int level, const Result& res) {
for (int i = 0; i < level; ++i) fprintf(stderr, " ");
fprintf(stderr, "* %s p=%f q=%f scriptlen=%i sat=%f nsat=%f cost=%f\n", DebugNode(res.node).c_str(), res.p, res.q, (int)res.node->ScriptSize(), res.pair.sat, res.pair.nsat, res.cost);
assert(res.subs.size() == res.node->subs.size());
for (size_t j = 0; j < res.subs.size(); ++j) {
PrintCompilationResult(level + 1, *(res.subs[j]));
}
}
*/
} // namespace
bool ParsePolicy(const std::string& policy) {
Policy pol = Parse(policy);
if (!pol()) return false;
return true;
}
bool Compile(const std::string& policy, miniscript::NodeRef<CompilerContext::Key>& ret, double& avgcost) {
Policy pol = Parse(policy);
if (!pol()) return false;
const Strat* strat;
StratStore store;
{
std::unordered_map<const Policy*, const Strat*> cache;
strat = ComputeStrategy(pol, cache, store);
}
if (!strat) return false;
std::map<CompilationKey, Compilation> cache;
const Compilation& compilation = GetCompilation(strat, 1.0, 0.0, cache);
auto res = compilation.Query("Bms"_mstf);
bool ok = false;
if (res.size() == 1) {
res[0].node->DuplicateKeyCheck(COMPILER_CTX);
if (res[0].node->IsSane()) {
ret = std::move(res[0].node);
avgcost = res[0].pair.sat;
ok = true;
}
}
return ok;
}
std::string Expand(std::string str) {
while (true) {
auto pos = str.find("sha256(H)");
if (pos == std::string::npos) break;
str.replace(pos, 9, "sha256(8888888888888888888888888888888888888888888888888888888888888888)");
}
while (true) {
auto pos = str.find("hash256(H)");
if (pos == std::string::npos) break;
str.replace(pos, 10, "hash256(8888888888888888888888888888888888888888888888888888888888888888)");
}
while (true) {
auto pos = str.find("ripemd160(H)");
if (pos == std::string::npos) break;
str.replace(pos, 12, "ripemd160(9999999999999999999999999999999999999999)");
}
while (true) {
auto pos = str.find("hash160(H)");
if (pos == std::string::npos) break;
str.replace(pos, 10, "hash160(9999999999999999999999999999999999999999)");
}
while (true) {
auto pos = str.find(" ");
if (pos == std::string::npos) break;
str.replace(pos, 1, "");
}
return str;
}