-
Notifications
You must be signed in to change notification settings - Fork 8
/
inference.py
72 lines (60 loc) · 2.59 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
""" Test on random audio from dataset and visualize the attention matrix.
"""
import torch
import os
import numpy as np
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
import argparse
plt.rcParams['font.sans-serif'] = ['Microsoft JhengHei']
def showAttention(predictions, attentions):
output_words = predictions.split()
# Set up figure with colorbar
fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
cax = ax.matshow(attentions, cmap='bone')
ax.set_yticklabels([''] + output_words)
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
def main():
parser = argparse.ArgumentParser(description="Test on random audio from dataset and visualize the attention matrix.")
parser.add_argument('ckpt', type=str, help="Checkpoint to restore.")
parser.add_argument('--split', default='test', type=str, help="Specify which split of data to evaluate.")
parser.add_argument('--gpu_id', default=0, type=int, help="CUDA visible GPU ID. Currently only support single GPU.")
parser.add_argument('--beams', default=1, type=int, help="Beam Search width.")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
assert torch.cuda.is_available()
import data
import build_model
# Restore checkpoint
info = torch.load(args.ckpt)
cfg = info['cfg']
# Create dataset
loader = data.load(split=args.split, batch_size=1)
# Build model
tokenizer = torch.load('tokenizer.pth')
model = build_model.Seq2Seq(len(tokenizer.vocab),
hidden_size=cfg['model']['hidden_size'],
encoder_layers=cfg['model']['encoder_layers'],
decoder_layers=cfg['model']['decoder_layers'],
use_bn=cfg['model']['use_bn'])
model.load_state_dict(info['weights'])
model.eval()
model = model.cuda()
# Inference
with torch.no_grad():
for (x, xlens, y) in loader:
predictions, attentions = model(x.cuda(), xlens, beam_width=args.beams)
predictions, attentions = predictions[0], attentions[0]
predictions = tokenizer.decode(predictions)
attentions = attentions[:len(predictions.split())].cpu().numpy() # (target_length, source_length)
ground_truth = tokenizer.decode(y[0])
print ("Predict:")
print (predictions)
print ("Ground-truth:")
print (ground_truth)
print ()
showAttention(predictions, attentions)
if __name__ == '__main__':
main()