Skip to content

Latest commit

 

History

History
74 lines (62 loc) · 4.79 KB

README.md

File metadata and controls

74 lines (62 loc) · 4.79 KB

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

PWC PWC PWC

This is the official codebase of the State-of-the-Art QTO framework for complex query answering, proposed in Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization.

Overview

We present QTO, an optimization-based method for answering complex logical queries on knowledge graphs. QTO efficiently finds the theoretically optimal solution by a forward-backward propagation on the tree-like computation graph. Here is an overview of our method:

This is the PyTorch implementation of our proposed model based on the KGReasoning code framework.

Data Preparation

Download KG data (FB15k, FB15k-237, NELL995) from here:

wget http://snap.stanford.edu/betae/KG_data.zip

and place them under folder data/. Go to kbc/ folder to prepare KG data for KGE model training:

mkdir data/
python preprocess_datasets.py

Pretrain KGE

QTO requires a pretrained knowledge graph embedding (KGE) model for complex query answering. We utilize the KGE implementation from ssl-relation-prediction. To train KGE (ComplEx) models on the three datasets, run the following commands under the kbc/ folder.

FB15K

CUDA_VISIBLE_DEVICES=0 python main.py --dataset FB15K --score_rel True --model ComplEx --rank 1000 --learning_rate 0.1 --batch_size 100 --lmbda 0.01 --w_rel 0.1 --max_epochs 100

FB15k-237

CUDA_VISIBLE_DEVICES=0 python main.py --dataset FB15K-237 --score_rel True --model ComplEx --rank 1000 --learning_rate 0.1 --batch_size 1000 --lmbda 0.05 --w_rel 4 --max_epochs 100

NELL995

CUDA_VISIBLE_DEVICES=0 python main.py --dataset NELL995 --score_rel True --model ComplEx --rank 1000 --learning_rate 0.1 --batch_size 1000 --lmbda 0.05 --w_rel 0 --max_epochs 100

Query Answering with QTO

We provide commands to reproduce the results in our paper. Note that --kbc_path should be followed by the actual path to your pretained KGE model in the last step. --fraction is used to scatter the neural adjacency matrix to $n$ parts so that each part can be stored as a dense matrix on the GPU during calculation. Increase the fraction size in case of GPU out-of-memory. The command will first calculate the neural adjacency matrix using pretrained KGE model (saved under kbc/{dataset}/), and save it under folder neural_adj/.

FB15K

CUDA_VISIBLE_DEVICES=0 python main.py --data_path data/FB15k-betae --kbc_path kbc/FB15K/best_valid.model --fraction 10 --thrshd 0.001 --neg_scale 6 

FB15k-237

CUDA_VISIBLE_DEVICES=0 python main.py --data_path data/FB15k-237-betae --kbc_path kbc/FB15K-237/best_valid.model --fraction 10 --thrshd 0.0002 --neg_scale 3

NELL995

CUDA_VISIBLE_DEVICES=0 python main.py --data_path data/NELL-betae --kbc_path kbc/NELL995/best_valid.model --fraction 10 --thrshd 0.0002 --neg_scale 6

The evaluation results will be saved under the results/ folder. Add --do_cp command to further do cardinality prediction. Add --path command for interpretability evaluation, and the intermediate variable interpretations will also be printed on the screen for observation. 'y' indicates the edge is trivially in the training graph, 'p' indicates the edge is only in the valid/test graph and is correctly predicted, 'n' indicates the edge is not in the graph and is incorrectly predicted.

Citation

Please cite our paper if you use our method in your work (Bibtex below).

@InProceedings{pmlr-v202-bai23b,
  title = 	 {Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization},
  author =       {Bai, Yushi and Lv, Xin and Li, Juanzi and Hou, Lei},
  booktitle = 	 {Proceedings of the 40th International Conference on Machine Learning},
  pages = 	 {1472--1491},
  year = 	 {2023},
  volume = 	 {202},
}