-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_convnet.py
173 lines (149 loc) · 6.03 KB
/
deep_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import pickle
import numpy as np
from common.layer import *
from collections import OrderedDict
class DeepConvNet():
def __init__(self,
input_dim=(1, 28, 28),
conv_param_1={
"filter_num": 16,
"filter_size": 3,
"stride": 1,
"pad": 1
},
conv_param_2={
"filter_num": 16,
"filter_size": 3,
"stride": 1,
"pad": 1
},
conv_param_3={
"filter_num": 32,
"filter_size": 3,
"stride": 1,
"pad": 1
},
conv_param_4={
"filter_num": 32,
"filter_size": 3,
"stride": 1,
"pad": 2
},
conv_param_5={
"filter_num": 64,
"filter_size": 3,
"stride": 1,
"pad": 1
},
conv_param_6={
"filter_num": 64,
"filter_size": 3,
"stride": 1,
"pad": 1
},
hidden_size=50,
output_size=10) -> None:
pre_node_nums = np.array([
1 * 3 * 3, 16 * 3 * 3, 16 * 3 * 3, 32 * 3 * 3, 32 * 3 * 3,
64 * 3 * 3, 64 * 4 * 4, hidden_size
])
weight_init_scales = np.sqrt(2.0 / pre_node_nums)
self.params = {}
pre_channel_num = input_dim[0]
for idx, conv_param in enumerate([
conv_param_1, conv_param_2, conv_param_3, conv_param_4,
conv_param_5, conv_param_6
]):
self.params[
f"W{idx+1}"] = weight_init_scales[idx] * np.random.randn(
conv_param["filter_num"], pre_channel_num,
conv_param["filter_size"], conv_param["filter_size"])
self.params[f"b{idx+1}"] = np.zeros(conv_param["filter_num"])
pre_channel_num = conv_param["filter_num"]
self.params["W7"] = weight_init_scales[6] * np.random.randn(
64 * 4 * 4, hidden_size)
self.params["b7"] = np.zeros(hidden_size)
self.params["W8"] = weight_init_scales[7] * np.random.randn(
hidden_size, output_size)
self.params["b8"] = np.zeros(output_size)
self.layers = []
self.layers.append(
Convolution(self.params["W1"], self.params["b1"],
conv_param_1["stride"], conv_param_1["pad"]))
self.layers.append(Relu())
self.layers.append(
Convolution(self.params["W2"], self.params["b2"],
conv_param_2["stride"], conv_param_2["pad"]))
self.layers.append(Relu())
self.layers.append(Pooling(2, 2, 2))
self.layers.append(
Convolution(self.params["W3"], self.params["b3"],
conv_param_3["stride"], conv_param_3["pad"]))
self.layers.append(Relu())
self.layers.append(
Convolution(self.params["W4"], self.params["b4"],
conv_param_4["stride"], conv_param_4["pad"]))
self.layers.append(Relu())
self.layers.append(Pooling(2, 2, 2))
self.layers.append(
Convolution(self.params["W5"], self.params["b5"],
conv_param_5["stride"], conv_param_5["pad"]))
self.layers.append(Relu())
self.layers.append(
Convolution(self.params["W6"], self.params["b6"],
conv_param_6["stride"], conv_param_6["pad"]))
self.layers.append(Relu())
self.layers.append(Pooling(2, 2, 2))
self.layers.append(Affine(self.params["W7"], self.params["b7"]))
self.layers.append(Relu())
self.layers.append(Dropout(0.5))
self.layers.append(Affine(self.params["W8"], self.params["b8"]))
self.layers.append(Dropout(0.5))
self.last_layer = SoftmaxWithLoss()
def predict(self, x, train_flag=False):
for layer in self.layers:
if isinstance(layer, Dropout):
x = layer.forward(x, train_flag)
else:
x = layer.forward(x)
return x
def loss(self, x, t):
y = self.predict(x, train_flag=True)
return self.last_layer.forward(y, t)
def accuracy(self, x, t, batch_size=100):
if t.ndim != 1: t = np.argmax(t, axis=1)
acc = 0.0
for i in range(x.shape[0] // batch_size):
x_batch = x[i * batch_size:(i + 1) * batch_size]
t_batch = t[i * batch_size:(i + 1) * batch_size]
y_batch = self.predict(x_batch, train_flag=False)
y_batch = np.argmax(y_batch, axis=1)
acc += np.sum(y_batch == t_batch)
return acc / x.shape[0]
def gradient(self, x, t):
self.loss(x, t)
dout = 1
dout = self.last_layer.backward(dout)
tmp_layers = self.layers.copy()
tmp_layers.reverse()
for layer in tmp_layers:
dout = layer.backward(dout)
grads = {}
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):
grads[f"W{i+1}"] = self.layers[layer_idx].dW
grads[f"b{i+1}"] = self.layers[layer_idx].db
return grads
def save_params(self, file_name="./weight/vgg_params.pkl"):
params = {}
for key, val in self.params.items():
params[key] = val
with open(file_name, "wb") as f:
pickle.dump(params, f)
def load_params(self, file_name="./weight/vgg_params.pkl"):
with open(file_name, "rb") as f:
params = pickle.load(f)
for key, val in params.items():
self.params[key] = val
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):
self.layers[layer_idx].dW = self.params[f"W{i+1}"]
self.layers[layer_idx].db = self.params[f"b{i+1}"]