-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_rationales_in_DiffLen.py
139 lines (104 loc) · 3.72 KB
/
extract_rationales_in_DiffLen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch
import argparse
import logging
import gc
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
import datetime
import os
date_time = str(datetime.date.today()) + "_" + ":".join(str(datetime.datetime.now()).split()[1].split(":")[:2])
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type = str,
help = "select dataset / task",
default = "sst",
#choices = ["SST","IMDB", "Yelp", "AmazDigiMu", "AmazPantry", "AmazInstr"]
)
parser.add_argument(
"--data_dir",
type = str,
help = "directory of saved processed data",
default = "datasets/"
)
parser.add_argument(
"--model_dir",
type = str,
help = "directory to save models",
default = "trained_models/"
)
parser.add_argument(
"--extracted_rationale_dir",
type = str,
help = "directory to save extracted_rationales",
default = "extracted_rationales/"
)
parser.add_argument(
"--thresholder",
type = str,
help = "thresholder for extracting rationales",
default = "fixed",
choices = ["contigious", "topk", "fixed"]
)
parser.add_argument(
'--use_tasc',
help='for using the component by GChrys and Aletras 2021',
action='store_true'
)
parser.add_argument(
"--inherently_faithful",
type = str,
help = "select dataset / task",
default = None,
choices = [None]
)
user_args = vars(parser.parse_args())
log_dir = "experiment_logs/extract_" + user_args["dataset"] + "_" + date_time + "/"
config_dir = "experiment_config/extract_" + user_args["dataset"] + "_" + date_time + "/"
os.makedirs(log_dir, exist_ok = True)
os.makedirs(config_dir, exist_ok = True)
import config.cfg
config.cfg.config_directory = config_dir
logging.basicConfig(
filename= log_dir + "/out.log",
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S'
)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logging.info("Running on cuda ? {}".format(torch.cuda.is_available()))
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
from src.common_code.initialiser import initial_preparations
import datetime
# creating unique config from stage_config.json file and model_config.json file
args = initial_preparations(user_args, stage = "extract")
logging.info("config : \n ----------------------")
[logging.info(k + " : " + str(v)) for k,v in args.items()]
logging.info("\n ----------------------")
from src.data_functions.dataholder import BERT_HOLDER as dataholder
from src.evaluation import evaluation_pipeline
data = dataholder(
args["data_dir"],
b_size = args["batch_size"],
stage = "eval",
return_as_frames = True
)
evaluator = evaluation_pipeline.evaluate(
model_path = args["model_dir"],
output_dims = data.nu_of_labels
)
logging.info("*********extracting in-domain rationales")
evaluator.register_importance_(data, data_split_name="test", tokenizer=None, max_seq_len=None)
#evaluator.create_rationales_(data)
evaluator.create_rationales_interpolation(data, fixed_rationale_len=7)
evaluator.create_rationales_interpolation(data, fixed_rationale_len=6)
evaluator.create_rationales_interpolation(data, fixed_rationale_len=5)
evaluator.create_rationales_interpolation(data, fixed_rationale_len=4) # generate data for interpolation
evaluator.create_rationales_interpolation(data, fixed_rationale_len=3) # generate data for interpolation
evaluator.create_rationales_interpolation(data, fixed_rationale_len=1) # generate data for interpolation
evaluator.create_rationales_interpolation(data, fixed_rationale_len=2) # generate data for interpolation
del data
del evaluator
gc.collect()#