-
Notifications
You must be signed in to change notification settings - Fork 15
/
gridMODIS_Dates.jl
executable file
·224 lines (200 loc) · 6.74 KB
/
gridMODIS_Dates.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/home/cfranken//julia
# Argument Parser
using ArgParse
using Base, Dates, Printf
# NetCDF tools for reading and writing
using NCDatasets
# Basic statistics
using Statistics
# File search and completion
using Glob
# JSON files
import JSON
# Parallel computing
using Distributed, SharedArrays
# Profiler
using Profile
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--Dict"
help = "JSON dictionary file to use"
arg_type = String
default = "/home/cfranken/code/gitHub/Gridding/gridding/modis_all.json"
"--outFile", "-o"
help = "output filename"
arg_type = String
default = "MODIS_map.nc"
"--monthly"
help = "Use time-steps in terms of months (not days)"
action = :store_true
"--latMin"
help = "Lower latitude bound"
arg_type = Float32
default = -90.0f0
"--latMax"
help = "Upper latitude bound"
arg_type = Float32
default = 90.0f0
"--lonMin"
help = "Lower longitude bound"
arg_type = Float32
default = -180.0f0
"--lonMax"
help = "Upper longitude bound"
arg_type = Float32
default = 180.0f0
"--dLat"
help = "latitude resolution"
arg_type = Float32
default = 1.0f0
"--dLon"
help = "longitude resolution"
arg_type = Float32
default = 1.0f0
"--startDate"
help = "Start Date (in YYYY-MM-DD)"
arg_type = String
default = "2018-03-07"
"--stopDate"
help = "Stop Date (in YYYY-MM-DD)"
arg_type = String
default = "2018-10-31"
"--dDays"
help = "Time steps in days (or months if --monthly is set)"
arg_type = Int64
default = 8
end
return parse_args(s)
end
function main()
#addprocs()
# Parse command line arguments
ar = parse_commandline()
# Find files to be processed
startDate = DateTime(ar["startDate"])
stopDate = DateTime(ar["stopDate"])
if ar["monthly"]
dDay = Dates.Month(ar["dDays"])
else
dDay = Dates.Day(ar["dDays"])
end
println(startDate, " ", stopDate)
cT = length(startDate:dDay:stopDate)
# Just lazy (too cumbersome in code as often used variables here)
latMax = ar["latMax"]
latMin = ar["latMin"]
lonMax = ar["lonMax"]
lonMin = ar["lonMin"]
dLat = ar["dLat"]
dLon = ar["dLon"]
eps = dLat/100
# Define spatial grid:
lat = collect(latMin+dLat/2.:dLat:latMax-dLat/2.0+eps)
lon = collect(lonMin+dLon/2.:dLon:lonMax-dLon/2.0+eps)
println("Output file dimension (time/lon/lat):")
println(cT, "/", length(lon),"/", length(lat))
# Create output file:
dsOut = Dataset(ar["outFile"],"c")
defDim(dsOut,"lon",length(lon))
defDim(dsOut,"lat",length(lat))
defDim(dsOut,"time", cT)
dsLat = defVar(dsOut,"lat",Float32,("lat",), attrib = ["units" => "degrees_north","long_name" => "Latitude"])
dsLon = defVar(dsOut,"lon",Float32,("lon",), attrib = ["units" => "degrees_east","long_name" => "Longitude"])
dsTime= defVar(dsOut,"time",Float32,("time",),attrib = ["units" => "days since 1970-01-01","long_name" => "Time (UTC), start of interval"])
dsLat[:]=lat
dsLon[:]=lon
# Define a global attribute
dsOut.attrib["title"] = "Awesome gridded file"
# Define gridded variables:
n=zeros(Float32,(length(lat),length(lon)))
SIF = zeros(Float32,(length(lat),length(lon)))
# Parse JSON files as dictionary
jsonDict = JSON.parsefile(ar["Dict"])
#d2 = jsonDict["basic"]
dGrid = jsonDict["grid"]
# Get file naming pattern (needs YYYY MM and DD in there)
fPattern = jsonDict["filePattern"]
# Get main folder for files:
folder = jsonDict["folder"]
NCDict= Dict{String, NCDatasets.CFVariable}()
println("Creating NC datasets in output:")
for (key, value) in dGrid
print(key," ")
NCDict[key] = defVar(dsOut,key,Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
end
println(" ")
#dSIF = defVar(dsOut,"sif",Float32,("lon","lat"),deflatelevel=4, fillvalue=-999)
dN = defVar(dsOut,"n",Float32,("time","lon","lat"),deflatelevel=4, fillvalue=-999)
# Define data array
mat_data= zeros(Float32,(length(lon),length(lat),1+length(dGrid)))
# Loop through time:
# Time counter
cT = 1
for d in startDate:dDay:stopDate
files = String[];
for di in d:Dates.Day(1):d+dDay-Dates.Day(1)
#********* This needs to be updated to use the Day of Year (and not MM and DD)!! *********#
filePattern = reduce(replace,["YYYY" => lpad(Dates.year(di),4,"0"), "MM" => lpad(Dates.month(di),2,"0"), "DD" => lpad(Dates.day(di),2,"0")], init=fPattern)
println(filePattern)
files = [files;glob(filePattern, folder)]
end
#println(files)
# Loop through all files
for a in files
# Read NC file
fin = Dataset(a)
# Check lat/lon first to see what data to read in
#********* Here you need to read in lat/lon from MODIS (table or calculate on the fly) *********#
#lat_in = fin[d2["lat"]].var[:]
#lon_in = fin[d2["lon"]].var[:]
# Call the variables lat_in and lon_in and then best
lat_in_ = fin[d2["lat_bnd"]].var[:]
lon_in_ = fin[d2["lon_bnd"]].var[:]
dim = size(lat_in_)
# Get indices within the lat/lon boudning box:
idx = findall((minLat[:,1].>latMin).&(maxLat[:,1].<latMax).&(minLon[:,1].>lonMin).&(maxLon[:,1].<lonMax))
# Read data only for non-empty indices
if length(idx) > 0
#print(size(lat_in_))
mat_in = zeros(Float32,(length(lat_in_[:,1]),length(dGrid)+1))
dim = size(mat_in)
# Read in all entries defined in JSON file:
co = 1
# This should just read in the datasets:
for (key, value) in dGrid
#println(key, value)
mat_in[:,co]=fin[value].var[:]
co += 1
end
mat_in[:,end].=1
# This computes the indices into which the respective lats and lons are falling into.
iLat_ = ((lat_in[idx].-latMin)/(latMax-latMin)*length(lat)).+1
iLon_ = ((lon_in[idx].-lonMin)/(lonMax-lonMin)*length(lon)).+1
# Once you have done this, we can chat about the gridding itself (just a few lines of code here)
println("Read ", a, " ", length(idx))
else
println("Read ", a, " ", length(idx))
end
close(fin)
end
# Filter all data, set averages
dims = size(mat_data)
println("Averaging final product...")
NN = mat_data[:,:,end]
dN[cT,:,:]=NN
# Write out time:
dsTime[cT]=d
co = 1
for (key, value) in dGrid
da = round.(mat_data[:,:,co]./mat_data[:,:,end],sigdigits=5)
da[NN.<1e-10].=-999
NCDict[key][cT,:,:]=da
co += 1
end
cT += 1
fill!(mat_data,0.0)
end
close(dsOut)
end
main()