-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathTOP.py
939 lines (834 loc) · 41.3 KB
/
TOP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
##################
## 7 # TOPOLOGY ## -> @TOP <-
##################
import IO, FUNC, MAP
import logging, math
# This is a generic class for Topology Bonded Type definitions
class Bonded:
# The init method is generic to the bonded types,
# but may call the set method if atoms are given
# as (ID, ResidueName, SecondaryStructure) tuples
# The set method is specific to the different types.
def __init__(self, other=None, options=None, **kwargs):
self.atoms = []
self.type = -1
self.parameters = []
self.comments = []
self.category = None
if options and type(options) == dict:
self.options = options
if other:
# If other is given, then copy the attributes
# if it is of the same class or set the
# attributes according to the key names if
# it is a dictionary
if other.__class__ == self.__class__:
for attr in dir(other):
if not attr[0] == "_":
setattr(self, attr, getattr(other, attr))
elif type(other) == dict:
for attr in other.keys():
setattr(self, attr, other[attr])
elif type(other) in (list, tuple):
self.atoms = other
# For every item in the kwargs keys, set the attribute
# with the same name. This can be used to specify the
# attributes directly or to override attributes
# copied from the 'other' argument.
for key in kwargs:
setattr(self, key, kwargs[key])
# If atoms are given as tuples of
# (ID, ResidueName[, SecondaryStructure])
# then determine the corresponding parameters
# from the lists above
if self.atoms and type(self.atoms[0]) == tuple:
self.set(self.atoms, **kwargs)
def __nonzero__(self):
return bool(self.atoms)
def __str__(self):
if not self.atoms or not self.parameters:
return ""
s = ["%5d" % i for i in self.atoms]
# For exclusions, no type is defined, which equals -1
if self.type != -1: s.append(" %5d " % self.type)
# Print integers and floats in proper format and neglect None terms
s.extend([FUNC.formatString(i) for i in self.parameters if i is not None])
if self.comments:
s.append(';')
if type(self.comments) == str:
s.append(self.comments)
else:
s.extend([str(i) for i in self.comments])
return " ".join(s)
def __iadd__(self, num):
self.atoms = [i + int(num) for i in self.atoms]
return self
def __add__(self, num):
out = self.__class__(self)
out += num
return out
def __eq__(self, other):
if type(other) in (list, tuple):
return self.atoms == other
else:
return self.atoms == other.atoms and self.type == other.type and self.parameters == other.parameters
# This function needs to be overridden for descendents
def set(self, atoms, **kwargs):
pass
# The set method of this class will look up parameters for backbone beads
# Side chain bonds ought to be set directly, using the constructor
# providing atom numbers, bond type, and parameters
# Constraints are bonds with kb = None, which can be extracted
# using the category
class Bond(Bonded):
def set(self, atoms, **kwargs):
ids, r, ss, ca = zip(*atoms)
self.atoms = ids
self.type = 1
self.positionCa = ca
self.comments = "%s(%s)-%s(%s)" % (r[0], ss[0], r[1], ss[1])
# The category can be used to keep bonds sorted
self.category = kwargs.get("category")
self.parameters = self.options['ForceField'].bbGetBond(r, ca, ss)
# Backbone bonds also can be constraints.
# We could change the type further on, but this is more general.
# Even better would be to add a new type: BB-Constraint
if self.parameters[1] == None:
self.category = 'Constraint'
# Overriding __str__ method to suppress printing of bonds with Fc of 0
def __str__(self):
if len(self.parameters) > 1 and self.parameters[1] == 0:
return ""
return Bonded.__str__(self)
# Similar to the preceding class
class Angle(Bonded):
def set(self, atoms, **kwargs):
ids, r, ss, ca = zip(*atoms)
self.atoms = ids
self.type = 2
self.positionCa = ca
self.comments = "%s(%s)-%s(%s)-%s(%s)" % (r[0], ss[0], r[1], ss[1], r[2], ss[2])
self.category = kwargs.get("category")
self.parameters = self.options['ForceField'].bbGetAngle(r, ca, ss)
# Similar to the preceding class
class Vsite(Bonded):
def set(self, atoms, **kwargs):
ids, r, ss, ca = zip(*atoms)
self.atoms = ids
self.type = 1
self.positionCa = ca
self.comments = "%s" % (r[0])
self.category = kwargs.get("category")
self.parameters = kwargs.get("parameters")
# Similar to the preceding class
class Exclusion(Bonded):
def set(self, atoms, **kwargs):
ids, r, ss, ca = zip(*atoms)
self.atoms = ids
self.positionCa = ca
self.comments = "%s" % (r[0])
self.category = kwargs.get("category")
self.parameters = kwargs.get("parameters")
# Similar to the preceding class
class Dihedral(Bonded):
def set(self, atoms, **kwargs):
ids, r, ss, ca = zip(*atoms)
self.atoms = ids
self.type = 1
self.positionCa = ca
self.comments = "%s(%s)-%s(%s)-%s(%s)-%s(%s)" % (r[0], ss[0], r[1], ss[1], r[2], ss[2], r[3], ss[3])
self.category = kwargs.get("category")
if ''.join(i for i in ss) == 'FFFF':
# Collagen
self.parameters = self.options['ForceField'].bbDihedDictD['F']
elif ''.join(i for i in ss) == 'EEEE' and self.options['ExtendedDihedrals']:
# Use dihedrals
self.parameters = self.options['ForceField'].bbDihedDictD['E']
elif set(ss).issubset("H123"):
# Helix
self.parameters = self.options['ForceField'].bbDihedDictD['H']
else:
self.parameters = None
# This list allows to retrieve Bonded class items based on the category
# If standard, dictionary type indexing is used, only exact matches are
# returned. Alternatively, partial matching can be achieved by setting
# a second 'True' argument.
class CategorizedList(list):
def __getitem__(self, tag):
if type(tag) == int:
# Call the parent class __getitem__
return list.__getitem__(self, tag)
if type(tag) == str:
return [i for i in self if i.category == tag]
if tag[1]:
return [i for i in self if tag[0] in i.category]
else:
return [i for i in self if i.category == tag[0]]
class Topology:
def __init__(self, other=None, options=None, name=""):
self.name = ''
self.nrexcl = 1
self.atoms = CategorizedList()
self.vsites = CategorizedList()
self.exclusions = CategorizedList()
self.bonds = CategorizedList()
self.angles = CategorizedList()
self.dihedrals = CategorizedList()
self.impropers = CategorizedList()
self.constraints = CategorizedList()
self.posres = CategorizedList()
self.sequence = []
self.secstruc = ""
# Okay, this is sort of funny; we will add a
# #define mapping virtual_sitesn
# to the topology file, followed by a header
# [ mapping ]
self.mapping = []
# For multiscaling we have to keep track of the number of
# real atoms that correspond to the beads in the topology
self.natoms = 0
self.multiscale = options['multi']
if options:
self.options = options
else:
self.options = {}
if not other:
# Returning an empty instance
return
elif isinstance(other, Topology):
for attrib in ["atoms", "vsites", "bonds", "angles", "dihedrals", "impropers", "constraints", "posres"]:
setattr(self, attrib, getattr(other, attrib, []))
elif isinstance(other, IO.Chain):
if other.type() == "Protein":
self.fromAminoAcidSequence(other)
elif other.type() == "Nucleic":
# Currently there are no Martini Nucleic Acids
self.fromNucleicAcidSequence(other)
elif other.type() == "Mixed":
logging.warning('Mixed Amino Acid /Nucleic Acid chains are not yet implemented')
# How can you have a mixed chain?
# Well, you could get a covalently bound lipid or piece of DNA to a protein :S
# But how to deal with that?
# Probably one should separate the chains into blocks of specified type,
# determine the locations of links, then construct the topologies for the
# blocks and combine them according to the links.
pass
else:
# This chain should not be polymeric, but a collection of molecules
# For each unique residue type fetch the proper moleculetype
self.fromMoleculeList(other)
if name:
self.name = name
def __iadd__(self, other):
if not isinstance(other, Topology):
other = Topology(other)
shift = len(self.atoms)
last = self.atoms[-1]
# The following used work: zip>list expansions>zip back, but that only works if
# all the tuples in the original list of of equal length. With masses and charges
# that is not necessarly the case.
for atom in other.atoms:
atom = list(atom)
atom[0] += shift # Update atom numbers
atom[2] += last[2] # Update residue numbers
atom[5] += last[5] # Update charge group numbers
self.atoms.append(tuple(atom))
for attrib in ["bonds", "vsites", "angles", "dihedrals", "impropers", "constraints", "posres"]:
getattr(self, attrib).extend([source + shift for source in getattr(other, attrib)])
return self
def __add__(self, other):
out = Topology(self)
if not isinstance(other, Topology):
other = Topology(other)
out += other
return out
def __str__(self):
if self.multiscale:
out = ['; MARTINI (%s) Multiscale virtual sites topology section for "%s"' % (self.options['ForceField'].name, self.name)]
else:
string = '; MARTINI (%s) Coarse Grained topology file for "%s"' % (self.options['ForceField'].name, self.name)
string += '\n; Created by martinize.py version %s \n; Using the following options: ' % (self.options['Version'])
string += ' '.join(self.options['Arguments'])
out = [string]
if self.sequence:
out += [
'; Sequence:',
'; ' + ''.join([MAP.AA321.get(AA) for AA in self.sequence]),
'; Secondary Structure:',
'; ' + self.secstruc,
]
# Do not print a molecule name when multiscaling
# In that case, the topology created here needs to be appended
# at the end of an atomistic moleculetype
if not self.multiscale:
out += ['\n[ moleculetype ]',
'; Name Exclusions',
'%-15s %3d' % (self.name, self.nrexcl)]
out.append('\n[ atoms ]')
# For virtual sites and dummy beads we have to be able to specify the mass.
# Thus we need two different format strings:
fs8 = '%5d %5s %5d %5s %5s %5d %7.4f ; %s'
fs9 = '%5d %5s %5d %5s %5s %5d %7.4f %7.4f ; %s'
out.extend([len(i) == 9 and fs9 % i or fs8 % i for i in self.atoms])
# Print out the vsites only if they excist. Right now it can only be type 1 virual sites.
vsites = [str(i) for i in self.vsites]
if vsites:
out.append('\n[ virtual_sites2 ]')
out.extend(vsites)
# Print out the exclusions only if they excist.
exclusions = [str(i) for i in self.exclusions]
if exclusions:
out.append('\n[ exclusions ]')
out.extend(exclusions)
if self.multiscale:
out += ['\n;\n; Coarse grained to atomistic mapping\n;',
'#define mapping virtual_sitesn',
'[ mapping ]']
for i, j in self.mapping:
out.append(("%5d 2 " % i)+" ".join(["%5d" % k for k in j]))
logging.info('Created virtual sites section for multiscaled topology')
return "\n".join(out)
# Bonds in order: backbone, backbone-sidechain, sidechain, short elastic, long elastic
out.append("\n[ bonds ]")
# Backbone-backbone
bonds = [str(i) for i in self.bonds["BB"]]
if bonds:
out.append("; Backbone bonds")
out.extend(bonds)
# Rubber Bands
bonds = [str(i) for i in self.bonds["Rubber", True]]
if bonds:
# Add a CPP style directive to allow control over the elastic network
out.append("#ifndef NO_RUBBER_BANDS")
out.append("#ifndef RUBBER_FC\n#define RUBBER_FC %f\n#endif" % self.options['ElasticMaximumForce'])
out.extend(bonds)
out.append("#endif")
# Backbone-Sidechain/Sidechain-Sidechain
bonds = [str(i) for i in self.bonds["SC"]]
if bonds:
out.append("; Sidechain bonds")
out.extend(bonds)
# Short elastic/Long elastic
bonds = [str(i) for i in self.bonds["Elastic short"]]
if bonds:
out.append("; Short elastic bonds for extended regions")
out.extend(bonds)
bonds = [str(i) for i in self.bonds["Elastic long"]]
if bonds:
out.append("; Long elastic bonds for extended regions")
out.extend(bonds)
# Cystine bridges
bonds = [str(i) for i in self.bonds["Cystine"]]
if bonds:
out.append("; Cystine bridges")
out.extend(bonds)
# Other links
bonds = [str(i) for i in self.bonds["Link"]]
if bonds:
out.append("; Links/Cystine bridges")
out.extend(bonds)
# Constraints
out.append("\n[ constraints ]")
out.extend([str(i) for i in self.bonds["Constraint"]])
# Angles
out.append("\n[ angles ]")
out.append("; Backbone angles")
out.extend([str(i) for i in self.angles["BBB"]])
out.append("; Backbone-sidechain angles")
out.extend([str(i) for i in self.angles["BBS"]])
out.append("; Sidechain angles")
out.extend([str(i) for i in self.angles["SC"]])
# Dihedrals
out.append("\n[ dihedrals ]")
out.append("; Backbone dihedrals")
out.extend([str(i) for i in self.dihedrals["BBBB"] if i.parameters])
out.append("; Sidechain improper dihedrals")
out.extend([str(i) for i in self.dihedrals["SC"] if i.parameters])
# Postition Restraints
if self.posres:
out.append("\n#ifdef POSRES")
out.append("#ifndef POSRES_FC\n#define POSRES_FC %.2f\n#endif" % self.options['PosResForce'])
out.append(" [ position_restraints ]")
out.extend([' %5d 1 POSRES_FC POSRES_FC POSRES_FC' % i for i in self.posres])
out.append("#endif")
logging.info('Created coarsegrained topology')
return "\n".join(out)
def fromAminoAcidSequence(self, sequence, secstruc=None, links=None,
breaks=None, mapping=None, rubber=False,
multi=False):
'''The sequence function can be used to generate the topology for
a sequence :) either given as sequence or as chain'''
# Shift for the atom numbers of the atomistic part in a chain
# that is being multiscaled
shift = 0
# First check if we get a sequence or a Chain instance
if isinstance(sequence, IO.Chain):
chain = sequence
links = chain.links
breaks = chain.breaks
# If the mapping is not specified, the actual mapping is taken,
# used to construct the coarse grained system from the atomistic one.
# The function argument "mapping" could be used to use a default
# mapping scheme in stead, like the mapping for the GROMOS96 force field.
mapping = mapping or chain.mapping
multi = self.options['multi'] or chain.multiscale
self.secstruc = chain.sstypes or len(chain)*"C"
self.sequence = chain.sequence
# If anything hints towards multiscaling, do multiscaling
self.multiscale = self.multiscale or chain.multiscale or multi
if self.multiscale:
shift = self.natoms
self.natoms += len(chain.atoms())
elif not secstruc:
# If no secondary structure is provided, set all to coil
chain = None
self.secstruc = len(self.sequence)*"C"
else:
# If a secondary structure is provided, use that. chain is none.
chain = None
self.secstruc = secstruc
logging.debug(self.secstruc)
logging.debug(self.sequence)
# Fetch the sidechains
# Pad with empty lists for atoms, bonds, angles
# and dihedrals, and take the first four lists out
# This will avoid errors for residues for which
# these are not defined.
sc = [(self.options['ForceField'].sidechains[res]+5*[[]])[:5] for res in self.sequence]
# ID of the first atom/residue
# The atom number and residue number follow from the last
# atom c.q. residue id in the list processed in the topology
# thus far. In the case of multiscaling, the real atoms need
# also be accounted for.
startAtom = self.natoms + 1
startResi = self.atoms and self.atoms[-1][2]+1 or 1
# Backbone bead atom IDs
bbid = [startAtom]
for i in zip(*sc)[0]:
bbid.append(bbid[-1]+len(i)+1)
# Calpha positions, to get Elnedyn BBB-angles and BB-bond lengths
# positionCa = [residue[1][4:] for residue in chain.residues]
# The old method (line above) assumed no hydrogens: Ca would always be
# the second atom of the residue. Now we look at the name.
positionCa = []
for residue in chain.residues:
for atom in residue:
if atom[0] == "CA":
positionCa.append(atom[4:])
# Residue numbers for this moleculetype topology
resid = range(startResi, startResi+len(self.sequence))
# This contains the information for deriving backbone bead types,
# bb bond types, bbb/bbs angle types, and bbbb dihedral types and
# Elnedyn BB-bondlength BBB-angles
seqss = zip(bbid, self.sequence, self.secstruc, positionCa)
# Fetch the proper backbone beads
bb = [self.options['ForceField'].bbGetBead(res, typ) for num, res, typ, Ca in seqss]
# If termini need to be charged, change the bead types
if not self.options['NeutralTermini']:
bb[0] = "Qd"
bb[-1] = "Qa"
# If breaks need to be charged, change the bead types
if self.options['ChargesAtBreaks']:
for i in breaks:
bb[i] = "Qd"
bb[i-1] = "Qa"
# For backbone parameters, iterate over fragments, inferred from breaks
for i, j in zip([0]+breaks, breaks+[-1]):
# Extract the fragment
frg = j == -1 and seqss[i:] or seqss[i:j]
# Iterate over backbone bonds
self.bonds.extend([Bond(pair, category="BB", options=self.options,) for pair in zip(frg, frg[1:])])
# Iterate over backbone angles
# Don't skip the first and last residue in the fragment
self.angles.extend([Angle(triple, options=self.options, category="BBB") for triple in zip(frg, frg[1:], frg[2:])])
# Get backbone quadruples
quadruples = zip(frg, frg[1:], frg[2:], frg[3:])
# No i-1,i,i+1,i+2 interactions defined for Elnedyn
if self.options['ForceField'].UseBBBBDihedrals:
# Process dihedrals
for q in quadruples:
id, rn, ss, ca = zip(*q)
# Maybe do local elastic networks
if ss == ("E", "E", "E", "E") and not self.options['ExtendedDihedrals']:
# This one may already be listed as the 2-4 bond of a previous one
if not (id[0], id[2]) in self.bonds:
self.bonds.append(Bond(
options = self.options,
atoms = (id[0], id[2]),
parameters = self.options['ForceField'].ebonds['short'],
type = 1,
comments = "%s(%s)-%s(%s) 1-3" % (rn[0], id[0], rn[2], id[2]),
category = "Elastic short"))
self.bonds.append(Bond(
options = self.options,
atoms = (id[1], id[3]),
parameters = self.options['ForceField'].ebonds['short'],
type = 1,
comments = "%s(%s)-%s(%s) 2-4" % (rn[1], id[1], rn[3], id[3]),
category = "Elastic short"))
self.bonds.append(Bond(
options = self.options,
atoms = (id[0], id[3]),
parameters = self.options['ForceField'].ebonds['long'],
type = 1,
comments = "%s(%s)-%s(%s) 1-4" % (rn[0], id[0], rn[3], id[3]),
category = "Elastic long"))
else:
# Since dihedrals can return None, we first collect them separately and then
# add the non-None ones to the list
dihed = Dihedral(q, options=self.options, category="BBBB")
if dihed:
self.dihedrals.append(dihed)
# Elnedyn does not use backbone-backbone-sidechain-angles
if self.options['ForceField'].UseBBSAngles:
# Backbone-Backbone-Sidechain angles
# If the first residue has a sidechain, we take SBB, otherwise we skip it
# For other sidechains, we 'just' take BBS
if len(frg) > 1 and frg[1][0]-frg[0][0] > 1:
self.angles.append(Angle(
options = self.options,
atoms = (frg[0][0] + 1, frg[0][0], frg[1][0]),
parameters = self.options['ForceField'].bbsangle,
type = 2,
comments = "%s(%s)-%s(%s) SBB" % (frg[0][1], frg[0][2], frg[1][1], frg[1][2]),
category = "BBS"))
# Start from first residue: connects sidechain of second residue
for (ai, ni, si, ci), (aj, nj, sj, cj), s in zip(frg[0:], frg[1:], sc[1:]):
if s[0]:
self.angles.append(Angle(
options = self.options,
atoms = (ai, aj, aj+1),
parameters = self.options['ForceField'].bbsangle,
type = 2,
comments = "%s(%s)-%s(%s) SBB" % (ni, si, nj, sj),
category = "BBS"))
# Now do the atom list, and take the sidechains along
#
# AtomID AtomType ResidueID ResidueName AtomName ChargeGroup Charge ; Comments
atid = startAtom
for resi, resname, bbb, sidechn, ss in zip(resid, self.sequence, bb, sc, self.secstruc):
scatoms, bon_par, ang_par, dih_par, vsite_par = sidechn
# Side chain bonded terms
# Collect bond, angle and dihedral connectivity
bon_con, ang_con, dih_con, vsite_con = (self.options['ForceField'].connectivity[resname]+4*[[]])[:4]
# Side Chain Bonds/Constraints
for atids, par in zip(bon_con, bon_par):
if par[1] == None:
self.bonds.append(Bond(
options = self.options,
atoms = atids,
parameters = [par[0]],
type = 1,
comments = resname,
category = "Constraint"))
else:
self.bonds.append(Bond(
options = self.options,
atoms = atids,
parameters = par,
type = 1,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.bonds[-1] += atid
# Side Chain Angles
for atids, par in zip(ang_con, ang_par):
self.angles.append(Angle(
options = self.options,
atoms = atids,
parameters = par,
type = 2,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.angles[-1] += atid
# Side Chain Dihedrals
for atids, par in zip(dih_con, dih_par):
self.dihedrals.append(Dihedral(
options = self.options,
atoms = atids,
parameters = par,
type = 2,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.dihedrals[-1] += atid
# Side Chain V-Sites
for atids, par in zip(vsite_con, vsite_par):
self.vsites.append(Vsite(
options = self.options,
atoms = atids,
parameters = par,
type = 1,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.vsites[-1] += atid
# Side Chain exclusions
# The polarizable forcefield give problems with the charges in the sidechain,
# if the backbone is also charged.
# To avoid that, we add explicit exclusions
if bbb in self.options['ForceField'].charges.keys() and resname in self.options['ForceField'].mass_charge.keys():
for i in [j for j, d in enumerate(scatoms) if d == 'D']:
self.exclusions.append(Exclusion(
options = self.options,
atoms = (atid, i+atid+1),
comments = '%s(%s)' % (resname, resi),
parameters = (None, )))
# All residue atoms
counter = 0 # Counts over beads
for atype, aname in zip([bbb] + list(scatoms), MAP.CoarseGrained.residue_bead_names):
if self.multiscale:
atype, aname = "v" + atype, "v" + aname
# If mass or charge diverse, we adopt it here.
# We don't want to do this for BB beads because of charged termini.
if resname in self.options['ForceField'].mass_charge.keys() and counter != 0:
M, Q = self.options['ForceField'].mass_charge[resname]
aname = Q[counter-1] > 0 and 'SCP' or Q[counter-1] < 0 and 'SCN' or aname
self.atoms.append((atid, atype, resi, resname, aname, atid,
Q[counter-1], M[counter-1], ss))
else:
self.atoms.append((atid, atype, resi, resname, aname, atid,
self.options['ForceField'].charges.get(atype, 0), ss))
# Doing this here save going over all the atoms onesmore.
# Generate position restraints for all atoms or Backbone beads only.
if 'all' in self.options['PosRes']:
self.posres.append((atid))
elif aname in self.options['PosRes']:
self.posres.append((atid))
if mapping:
self.mapping.append((atid, [i + shift for i in mapping[counter]]))
atid += 1
counter += 1
# The rubber bands are best applied outside of the chain class, as that gives
# more control when chains need to be merged. The possibility to do it on the
# chain level is retained to allow building a complete chain topology in
# a straightforward manner after importing this script as module.
if rubber and chain:
rubberList = rubberBands(
[(i[0], j[4:7]) for i, j in zip(self.atoms, chain.cg()) if i[4] in ElasticBeads],
ElasticLowerBound, ElasticUpperBound,
ElasticDecayFactor, ElasticDecayPower,
ElasticMaximumForce, ElasticMinimumForce)
self.bonds.extend([Bond(i, options=self.options, type=6,
category="Rubber band") for i in rubberList])
# Note the equivalent of atomistic atoms that have been processed
if chain and self.multiscale:
self.natoms += len(chain.atoms())
def fromNucleicAcidSequence(self, sequence, secstruc=None, links=None, breaks=None,
mapping=None, rubber=False, multi=False):
# Shift for the atom numbers of the atomistic part in a chain
# that is being multiscaled
shift = 0
# First check if we get a sequence or a Chain instance
if isinstance(sequence, IO.Chain):
chain = sequence
links = chain.links
breaks = chain.breaks
# If the mapping is not specified, the actual mapping is taken,
# used to construct the coarse grained system from the atomistic one.
# The function argument "mapping" could be used to use a default
# mapping scheme in stead, like the mapping for the GROMOS96 force field.
mapping = mapping or chain.mapping
multi = self.options['multi'] or chain.multiscale
self.secstruc = chain.sstypes or len(chain)*"C"
self.sequence = chain.sequence
# If anything hints towards multiscaling, do multiscaling
self.multiscale = self.multiscale or chain.multiscale or multi
if self.multiscale:
shift = self.natoms
self.natoms += len(chain.atoms())
elif not secstruc:
# If no secondary structure is provided, set all to coil
chain = None
self.secstruc = len(self.sequence)*"C"
else:
# If a secondary structure is provided, use that. chain is none.
chain = None
self.secstruc = secstruc
logging.debug(self.secstruc)
logging.debug(self.sequence)
# Fetch the base information
# Pad with empty lists for atoms, bonds, angles
# and dihedrals, and take the first five lists out
# This will avoid errors for residues for which
# these are not defined.
sc = [(self.options['ForceField'].bases[res]+6*[[]])[:6] for res in self.sequence]
# ID of the first atom/residue
# The atom number and residue number follow from the last
# atom c.q. residue id in the list processed in the topology
# thus far. In the case of multiscaling, the real atoms need
# also be accounted for.
startAtom = self.natoms + 1
startResi = self.atoms and self.atoms[-1][2]+1 or 1
# Backbone bead atom IDs
bbid = [[startAtom, startAtom+1, startAtom+2]]
for i in zip(*sc)[0]:
bbid1 = bbid[-1][0]+len(i)+3
bbid.append([bbid1, bbid1+1, bbid1+2])
# Residue numbers for this moleculetype topology
resid = range(startResi, startResi+len(self.sequence))
# This contains the information for deriving backbone bead types,
# bb bond types, bbb/bbs angle types, and bbbb dihedral types.
seqss = zip(bbid, self.sequence, self.secstruc)
# Fetch the proper backbone beads
# Since there are three beads we need to split these to the list
bb = [self.options['ForceField'].bbGetBead(res, typ) for num, res, typ in seqss]
bb3 = [i for j in bb for i in j]
# This is going to be usefull for the type of the last backbone bead.
# If termini need to be charged, change the bead types
# if not self.options['NeutralTermini']:
# bb[0] ="Qd"
# bb[-1] = "Qa"
# If breaks need to be charged, change the bead types
# if self.options['ChargesAtBreaks']:
# for i in breaks:
# bb[i] = "Qd"
# bb[i-1] = "Qa"
# For backbone parameters, iterate over fragments, inferred from breaks
for i, j in zip([0]+breaks, breaks+[-1]):
# Extract the fragment
frg = j == -1 and seqss[i:] or seqss[i:j]
# Expand the 3 bb beads per residue into one long list
# Resulting list contains three tuples per residue
# We use the useless ca parameter to get the correct backbone bond from bbGetBond
frg = [(j[0][i], j[1], j[2], i) for j in frg for i in range(len(j[0]))]
# Iterate over backbone bonds
self.bonds.extend([Bond(pair, category="BB", options=self.options,) for pair in zip(frg, frg[1:])])
# Iterate over backbone angles
# Don't skip the first and last residue in the fragment
self.angles.extend([Angle(triple, options=self.options, category="BBB") for triple in zip(frg, frg[1:], frg[2:])])
# Get backbone quadruples
quadruples = zip(frg, frg[1:], frg[2:], frg[3:])
# No i-1,i,i+1,i+2 interactions defined for Elnedyn
# Process dihedrals
for q in quadruples:
id, rn, ss, ca = zip(*q)
# Since dihedrals can return None, we first collect them separately and then
# add the non-None ones to the list
dihed = Dihedral(q, options=self.options, category="BBBB")
if dihed:
self.dihedrals.append(dihed)
# Now do the atom list, and take the sidechains along
#
atid = startAtom
# We need to do some trickery to get all 3 bb beads in to these lists
# This adds each element to a list three times, feel free to shorten up
resid3 = [i for i in resid for j in range(3)]
sequence3 = [i for i in self.sequence for j in range(3)]
sc3 = [i for i in sc for j in range(3)]
secstruc3 = [i for i in self.secstruc for j in range(3)]
count = 0
for resi, resname, bbb, sidechn, ss in zip(resid3, sequence3, bb3, sc3, secstruc3):
# We only want one side chain per three backbone beads so this skips the others
if (count % 3) == 0:
# Note added impropers in contrast to aa
scatoms, bon_par, ang_par, dih_par, imp_par, vsite_par = sidechn
# Side chain bonded terms
# Collect bond, angle and dihedral connectivity
# Impropers needed to be added here for DNA
bon_con, ang_con, dih_con, imp_con, vsite_con = (self.options['ForceField'].connectivity[resname]+5*[[]])[:5]
# Side Chain Bonds/Constraints
for atids, par in zip(bon_con, bon_par):
if par[1] == None:
self.bonds.append(Bond(
options = self.options,
atoms = atids,
parameters = [par[0]],
type = 1,
comments = resname,
category = "Constraint"))
else:
self.bonds.append(Bond(
options = self.options,
atoms = atids,
parameters = par,
type = 1,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.bonds[-1] += atid
# Side Chain Angles
for atids, par in zip(ang_con, ang_par):
self.angles.append(Angle(
options = self.options,
atoms = atids,
parameters = par,
type = 2,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.angles[-1] += atid
# Side Chain Dihedrals
for atids, par in zip(dih_con, dih_par):
self.dihedrals.append(Dihedral(
options = self.options,
atoms = atids,
parameters = par,
type = 1,
comments = resname,
category = "BSC"))
# Shift the atom numbers
self.dihedrals[-1] += atid
# Side Chain Impropers
for atids, par in zip(imp_con, imp_par):
self.dihedrals.append(Dihedral(
options = self.options,
atoms = atids,
parameters = par,
type = 2,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.dihedrals[-1] += atid
# Side Chain V-Sites
for atids, par in zip(vsite_con, vsite_par):
self.vsites.append(Vsite(
options = self.options,
atoms = atids,
parameters = par,
type = 1,
comments = resname,
category = "SC"))
# Shift the atom numbers
self.vsites[-1] += atid
# Currently DNA needs exclusions for the base
# The loop runs over the first backbone bead so 3 needs to be added to the indices
for i in range(len(scatoms)):
for j in range(i+1, len(scatoms)):
self.exclusions.append(Exclusion(
options = self.options,
atoms = (i+atid+3, j+atid+3),
comments = '%s(%s)' % (resname, resi),
parameters = (None, )))
# All residue atoms
counter = 0 # Counts over beads
# Need to tweak this to get all the backbone beads to the list with the side chain
bbbset = [bb3[count], bb3[count+1], bb3[count+2]]
for atype, aname in zip(bbbset+list(scatoms), MAP.CoarseGrained.residue_bead_names_dna):
if self.multiscale:
atype, aname = "v"+atype, "v"+aname
self.atoms.append((atid, atype, resi, resname, aname, atid,
self.options['ForceField'].charges.get(atype, 0), ss))
# Doing this here saves going over all the atoms onesmore.
# Generate position restraints for all atoms or Backbone beads only.
if 'all' in self.options['PosRes']:
self.posres.append((atid))
elif aname in self.options['PosRes']:
self.posres.append((atid))
if mapping:
self.mapping.append((atid, [i+shift for i in mapping[counter]]))
atid += 1
counter += 1
count += 1
# One more thing, we need to remove dihedrals (2) and an angle (1) that reach beyond the 3' end
# This is stupid to do now but the total number of atoms seems not to be available before
# This iterate the list in reverse order so that removals don't affect later checks
for i in range(len(self.dihedrals)-1, -1, -1):
if (max(self.dihedrals[i].atoms) > self.atoms[-1][0]):
del self.dihedrals[i]
for i in range(len(self.angles)-1, -1, -1):
if (max(self.angles[i].atoms) > self.atoms[-1][0]):
del self.angles[i]
def fromMoleculeList(self, other):
pass