-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathcifar10_predict.py
53 lines (40 loc) · 1.75 KB
/
cifar10_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from random import shuffle
import os
import sys
def patch_path(path):
return os.path.join(os.path.dirname(__file__), path)
def load_audio_path_label_pairs(max_allowed_pairs=None):
from mxnet_audio.library.utility.gtzan_loader import download_gtzan_genres_if_not_found
download_gtzan_genres_if_not_found(patch_path('very_large_data/gtzan'))
audio_paths = []
with open(patch_path('data/lists/test_songs_gtzan_list.txt'), 'rt') as file:
for line in file:
audio_path = patch_path('very_large_data/' + line.strip())
audio_paths.append(audio_path)
pairs = []
with open(patch_path('data/lists/test_gt_gtzan_list.txt'), 'rt') as file:
for line in file:
label = int(line)
if max_allowed_pairs is None or len(pairs) < max_allowed_pairs:
pairs.append((audio_paths[len(pairs)], label))
else:
break
return pairs
def main():
sys.path.append(patch_path('..'))
audio_path_label_pairs = load_audio_path_label_pairs()
shuffle(audio_path_label_pairs)
print('loaded: ', len(audio_path_label_pairs))
from mxnet_audio.library.cifar10 import Cifar10AudioClassifier
from mxnet_audio.library.utility.gtzan_loader import gtzan_labels
classifier = Cifar10AudioClassifier()
classifier.load_model(model_dir_path=patch_path('models'))
for i in range(0, 20):
audio_path, actual_label_id = audio_path_label_pairs[i]
predicted_label_id = classifier.predict_class(audio_path)
print(audio_path)
predicted_label = gtzan_labels[predicted_label_id]
actual_label = gtzan_labels[actual_label_id]
print('predicted: ', predicted_label, 'actual: ', actual_label)
if __name__ == '__main__':
main()