Skip to content

Latest commit

 

History

History
414 lines (316 loc) · 15.2 KB

block009_dplyr-intro.md

File metadata and controls

414 lines (316 loc) · 15.2 KB

Introduction to dplyr

Intro

dplyr is a new package for data manipulation. It is built to be fast, highly expressive, and open-minded about how your data is stored. It is developed by Hadley Wickham and Romain Francois.

dplyr's roots are in an earlier, still-very-useful package called plyr, which implements the "split-apply-combine" strategy for data analysis. Where plyr covers a diverse set of inputs and outputs (e.g., arrays, data.frames, lists), dplyr has a laser-like focus on data.frames and related structures.

Have no idea what I'm talking about? Not sure if you care? If you use these base R functions: subset(), apply(), [sl]apply(), tapply(), aggregate(), split(), do.call(), then you should keep reading.

Load dplyr and gapminder

## install if you do not already have

## from CRAN:
## install.packages("dplyr")

## from GitHub using devtools (which you also might need to install!):
## if (packageVersion("devtools") < 1.6) {
##   install.packages("devtools")
## }
## devtools::install_github("hadley/lazyeval")
## devtools::install_github("hadley/dplyr")
suppressPackageStartupMessages(library(dplyr))
library(gapminder)

Load the Gapminder data

An excerpt of the Gapminder data which we work with alot.

str(gapminder)
## 'data.frame':	1704 obs. of  6 variables:
##  $ country  : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ year     : num  1952 1957 1962 1967 1972 ...
##  $ lifeExp  : num  28.8 30.3 32 34 36.1 ...
##  $ pop      : num  8425333 9240934 10267083 11537966 13079460 ...
##  $ gdpPercap: num  779 821 853 836 740 ...
head(gapminder)
##       country continent year lifeExp      pop gdpPercap
## 1 Afghanistan      Asia 1952  28.801  8425333  779.4453
## 2 Afghanistan      Asia 1957  30.332  9240934  820.8530
## 3 Afghanistan      Asia 1962  31.997 10267083  853.1007
## 4 Afghanistan      Asia 1967  34.020 11537966  836.1971
## 5 Afghanistan      Asia 1972  36.088 13079460  739.9811
## 6 Afghanistan      Asia 1977  38.438 14880372  786.1134

Meet tbl_df, an upgrade to data.frame

gtbl <- tbl_df(gapminder)
gtbl
## Source: local data frame [1,704 x 6]
## 
##        country continent  year lifeExp      pop gdpPercap
##         (fctr)    (fctr) (dbl)   (dbl)    (dbl)     (dbl)
## 1  Afghanistan      Asia  1952  28.801  8425333  779.4453
## 2  Afghanistan      Asia  1957  30.332  9240934  820.8530
## 3  Afghanistan      Asia  1962  31.997 10267083  853.1007
## 4  Afghanistan      Asia  1967  34.020 11537966  836.1971
## 5  Afghanistan      Asia  1972  36.088 13079460  739.9811
## 6  Afghanistan      Asia  1977  38.438 14880372  786.1134
## 7  Afghanistan      Asia  1982  39.854 12881816  978.0114
## 8  Afghanistan      Asia  1987  40.822 13867957  852.3959
## 9  Afghanistan      Asia  1992  41.674 16317921  649.3414
## 10 Afghanistan      Asia  1997  41.763 22227415  635.3414
## ..         ...       ...   ...     ...      ...       ...
glimpse(gtbl)
## Observations: 1,704
## Variables: 6
## $ country   (fctr) Afghanistan, Afghanistan, Afghanistan, Afghanistan,...
## $ continent (fctr) Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asi...
## $ year      (dbl) 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992...
## $ lifeExp   (dbl) 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.8...
## $ pop       (dbl) 8425333, 9240934, 10267083, 11537966, 13079460, 1488...
## $ gdpPercap (dbl) 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 78...

A tbl_df is basically an improved data.frame, for which dplyr provides nice methods for high-level inspection. Specifically, these methods do something sensible for datasets with many observations and/or variables. You do NOT need to turn your data.frames into tbl_dfs to use dplyr. I do so here for demonstration purposes only.

Think before you create excerpts of your data ...

If you feel the urge to store a little snippet of your data:

(snippet <- subset(gapminder, country == "Canada"))
##     country continent year lifeExp      pop gdpPercap
## 241  Canada  Americas 1952  68.750 14785584  11367.16
## 242  Canada  Americas 1957  69.960 17010154  12489.95
## 243  Canada  Americas 1962  71.300 18985849  13462.49
## 244  Canada  Americas 1967  72.130 20819767  16076.59
## 245  Canada  Americas 1972  72.880 22284500  18970.57
## 246  Canada  Americas 1977  74.210 23796400  22090.88
## 247  Canada  Americas 1982  75.760 25201900  22898.79
## 248  Canada  Americas 1987  76.860 26549700  26626.52
## 249  Canada  Americas 1992  77.950 28523502  26342.88
## 250  Canada  Americas 1997  78.610 30305843  28954.93
## 251  Canada  Americas 2002  79.770 31902268  33328.97
## 252  Canada  Americas 2007  80.653 33390141  36319.24

Stop and ask yourself ...

Do I want to create mini datasets for each level of some factor (or unique combination of several factors) ... in order to compute or graph something?

If YES, use proper data aggregation techniques or facetting in ggplot2 plots or conditioning in lattice -- don’t subset the data. Or, more realistic, only subset the data as a temporary measure while you develop your elegant code for computing on or visualizing these data subsets.

If NO, then maybe you really do need to store a copy of a subset of the data. But seriously consider whether you can achieve your goals by simply using the subset = argument of, e.g., the lm() function, to limit computation to your excerpt of choice. Lots of functions offer a subset = argument!

Copies and excerpts of your data clutter your workspace, invite mistakes, and sow general confusion. Avoid whenever possible.

Reality can also lie somewhere in between. You will find the workflows presented below can help you accomplish your goals with minimal creation of temporary, intermediate objects.

Use filter() to subset data row-wise.

filter() takes logical expressions and returns the rows for which all are TRUE.

filter(gtbl, lifeExp < 29)
## Source: local data frame [2 x 6]
## 
##       country continent  year lifeExp     pop gdpPercap
##        (fctr)    (fctr) (dbl)   (dbl)   (dbl)     (dbl)
## 1 Afghanistan      Asia  1952  28.801 8425333  779.4453
## 2      Rwanda    Africa  1992  23.599 7290203  737.0686
filter(gtbl, country == "Rwanda")
## Source: local data frame [12 x 6]
## 
##    country continent  year lifeExp     pop gdpPercap
##     (fctr)    (fctr) (dbl)   (dbl)   (dbl)     (dbl)
## 1   Rwanda    Africa  1952  40.000 2534927  493.3239
## 2   Rwanda    Africa  1957  41.500 2822082  540.2894
## 3   Rwanda    Africa  1962  43.000 3051242  597.4731
## 4   Rwanda    Africa  1967  44.100 3451079  510.9637
## 5   Rwanda    Africa  1972  44.600 3992121  590.5807
## 6   Rwanda    Africa  1977  45.000 4657072  670.0806
## 7   Rwanda    Africa  1982  46.218 5507565  881.5706
## 8   Rwanda    Africa  1987  44.020 6349365  847.9912
## 9   Rwanda    Africa  1992  23.599 7290203  737.0686
## 10  Rwanda    Africa  1997  36.087 7212583  589.9445
## 11  Rwanda    Africa  2002  43.413 7852401  785.6538
## 12  Rwanda    Africa  2007  46.242 8860588  863.0885
filter(gtbl, country %in% c("Rwanda", "Afghanistan"))
## Source: local data frame [24 x 6]
## 
##        country continent  year lifeExp      pop gdpPercap
##         (fctr)    (fctr) (dbl)   (dbl)    (dbl)     (dbl)
## 1  Afghanistan      Asia  1952  28.801  8425333  779.4453
## 2  Afghanistan      Asia  1957  30.332  9240934  820.8530
## 3  Afghanistan      Asia  1962  31.997 10267083  853.1007
## 4  Afghanistan      Asia  1967  34.020 11537966  836.1971
## 5  Afghanistan      Asia  1972  36.088 13079460  739.9811
## 6  Afghanistan      Asia  1977  38.438 14880372  786.1134
## 7  Afghanistan      Asia  1982  39.854 12881816  978.0114
## 8  Afghanistan      Asia  1987  40.822 13867957  852.3959
## 9  Afghanistan      Asia  1992  41.674 16317921  649.3414
## 10 Afghanistan      Asia  1997  41.763 22227415  635.3414
## ..         ...       ...   ...     ...      ...       ...

Compare with some base R code to accomplish the same things

gapminder[gapminder$lifeExp < 29, ] ## repeat `gapminder`, [i, j] indexing is distracting
subset(gapminder, country == "Rwanda") ## almost same as filter ... but wait ...

Meet the new pipe operator

Before we go any further, we should exploit the new pipe operator that dplyr imports from the magrittr package by Stefan Bache. This is going to change your data analytical life. You no longer need to enact multi-operation commands by nesting them inside each other, like so many Russian nesting dolls. This new syntax leads to code that is much easier to write and to read.

Here's what it looks like: %>%. The RStudio keyboard shortcut: Ctrl + Shift + M (Windows), Cmd + Shift + M (Mac).

Let's demo then I'll explain:

gapminder %>% head
##       country continent year lifeExp      pop gdpPercap
## 1 Afghanistan      Asia 1952  28.801  8425333  779.4453
## 2 Afghanistan      Asia 1957  30.332  9240934  820.8530
## 3 Afghanistan      Asia 1962  31.997 10267083  853.1007
## 4 Afghanistan      Asia 1967  34.020 11537966  836.1971
## 5 Afghanistan      Asia 1972  36.088 13079460  739.9811
## 6 Afghanistan      Asia 1977  38.438 14880372  786.1134

This is equivalent to head(gapminder). This pipe operator takes the thing on the left-hand-side and pipes it into the function call on the right-hand-side -- literally, drops it in as the first argument.

Never fear, you can still specify other arguments to this function! To see the first 3 rows of Gapminder, we could say head(gapminder, 3) or this:

gapminder %>% head(3)
##       country continent year lifeExp      pop gdpPercap
## 1 Afghanistan      Asia 1952  28.801  8425333  779.4453
## 2 Afghanistan      Asia 1957  30.332  9240934  820.8530
## 3 Afghanistan      Asia 1962  31.997 10267083  853.1007

I've advised you to think "gets" whenever you see the assignment operator, <-. Similary, you should think "then" whenever you see the pipe operator, %>%.

You are probably not impressed yet, but the magic will soon happen.

Use select() to subset the data on variables or columns.

Back to dplyr ...

Use select() to subset the data on variables or columns. Here's a conventional call:

select(gtbl, year, lifeExp) ## tbl_df prevents TMI from printing
## Source: local data frame [1,704 x 2]
## 
##     year lifeExp
##    (dbl)   (dbl)
## 1   1952  28.801
## 2   1957  30.332
## 3   1962  31.997
## 4   1967  34.020
## 5   1972  36.088
## 6   1977  38.438
## 7   1982  39.854
## 8   1987  40.822
## 9   1992  41.674
## 10  1997  41.763
## ..   ...     ...

And here's similar operation, but written with the pipe operator and piped through head:

gtbl %>%
  select(year, lifeExp) %>%
  head(4)
## Source: local data frame [4 x 2]
## 
##    year lifeExp
##   (dbl)   (dbl)
## 1  1952  28.801
## 2  1957  30.332
## 3  1962  31.997
## 4  1967  34.020

Think: "Take gtbl, then select the variables year and lifeExp, then show the first 4 rows."

Revel in the convenience

Here's the data for Cambodia, but only certain variables:

gtbl %>%
  filter(country == "Cambodia") %>%
  select(year, lifeExp)
## Source: local data frame [12 x 2]
## 
##     year lifeExp
##    (dbl)   (dbl)
## 1   1952  39.417
## 2   1957  41.366
## 3   1962  43.415
## 4   1967  45.415
## 5   1972  40.317
## 6   1977  31.220
## 7   1982  50.957
## 8   1987  53.914
## 9   1992  55.803
## 10  1997  56.534
## 11  2002  56.752
## 12  2007  59.723

and what a typical base R call would look like:

gapminder[gapminder$country == "Cambodia", c("year", "lifeExp")]
##     year lifeExp
## 217 1952  39.417
## 218 1957  41.366
## 219 1962  43.415
## 220 1967  45.415
## 221 1972  40.317
## 222 1977  31.220
## 223 1982  50.957
## 224 1987  53.914
## 225 1992  55.803
## 226 1997  56.534
## 227 2002  56.752
## 228 2007  59.723

or, possibly?, a nicer look using base R's subset() function:

subset(gapminder, country == "Cambodia", select = c(year, lifeExp))
##     year lifeExp
## 217 1952  39.417
## 218 1957  41.366
## 219 1962  43.415
## 220 1967  45.415
## 221 1972  40.317
## 222 1977  31.220
## 223 1982  50.957
## 224 1987  53.914
## 225 1992  55.803
## 226 1997  56.534
## 227 2002  56.752
## 228 2007  59.723

Pause to reflect

We've barely scratched the surface of dplyr but I want to point out key principles you may start to appreciate. If you're new to R or "programming with data", feel free skip this section and move on.

dplyr's verbs, such as filter() and select(), are what's called pure functions. To quote from Wickham's Advanced R Programming book:

The functions that are the easiest to understand and reason about are pure functions: functions that always map the same input to the same output and have no other impact on the workspace. In other words, pure functions have no side effects: they don’t affect the state of the world in any way apart from the value they return.

In fact, these verbs are a special case of pure functions: they take the same flavor of object as input and output. Namely, a data.frame or one of the other data receptacles dplyr supports. And finally, the data is always the very first argument of the verb functions.

This set of deliberate design choices, together with the new pipe operator, produces a highly effective, low friction domain-specific language for data analysis.

Go to the next block, dplyr functions for a single dataset, for more dplyr!

Resources

dplyr official stuff

RStudio dplyr and tidyr cheatsheet. Remember you can get to these via Help > Cheatsheets.

Excellent slides on pipelines and dplyr by TJ Mahr, talk given to the Madison R Users Group.

Blog post Hands-on dplyr tutorial for faster data manipulation in R by Data School, that includes a link to an R Markdown document and links to videos

Cheatsheet I made for dplyr join functions (not relevant yet but soon)