dplyr
is a new package for data manipulation. It is built to be fast, highly expressive, and open-minded about how your data is stored. It is developed by Hadley Wickham and Romain Francois.
dplyr
's roots are in an earlier, still-very-useful package called plyr
, which implements the "split-apply-combine" strategy for data analysis. Where plyr
covers a diverse set of inputs and outputs (e.g., arrays, data.frames, lists), dplyr
has a laser-like focus on data.frames and related structures.
Have no idea what I'm talking about? Not sure if you care? If you use these base R functions: subset()
, apply()
, [sl]apply()
, tapply()
, aggregate()
, split()
, do.call()
, then you should keep reading.
## install if you do not already have
## from CRAN:
## install.packages("dplyr")
## from GitHub using devtools (which you also might need to install!):
## if (packageVersion("devtools") < 1.6) {
## install.packages("devtools")
## }
## devtools::install_github("hadley/lazyeval")
## devtools::install_github("hadley/dplyr")
suppressPackageStartupMessages(library(dplyr))
library(gapminder)
An excerpt of the Gapminder data which we work with alot.
str(gapminder)
## 'data.frame': 1704 obs. of 6 variables:
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : num 1952 1957 1962 1967 1972 ...
## $ lifeExp : num 28.8 30.3 32 34 36.1 ...
## $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
## $ gdpPercap: num 779 821 853 836 740 ...
head(gapminder)
## country continent year lifeExp pop gdpPercap
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134
gtbl <- tbl_df(gapminder)
gtbl
## Source: local data frame [1,704 x 6]
##
## country continent year lifeExp pop gdpPercap
## (fctr) (fctr) (dbl) (dbl) (dbl) (dbl)
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134
## 7 Afghanistan Asia 1982 39.854 12881816 978.0114
## 8 Afghanistan Asia 1987 40.822 13867957 852.3959
## 9 Afghanistan Asia 1992 41.674 16317921 649.3414
## 10 Afghanistan Asia 1997 41.763 22227415 635.3414
## .. ... ... ... ... ... ...
glimpse(gtbl)
## Observations: 1,704
## Variables: 6
## $ country (fctr) Afghanistan, Afghanistan, Afghanistan, Afghanistan,...
## $ continent (fctr) Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asi...
## $ year (dbl) 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992...
## $ lifeExp (dbl) 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.8...
## $ pop (dbl) 8425333, 9240934, 10267083, 11537966, 13079460, 1488...
## $ gdpPercap (dbl) 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 78...
A tbl_df
is basically an improved data.frame, for which dplyr
provides nice methods for high-level inspection. Specifically, these methods do something sensible for datasets with many observations and/or variables. You do NOT need to turn your data.frames into tbl_df
s to use dplyr
. I do so here for demonstration purposes only.
If you feel the urge to store a little snippet of your data:
(snippet <- subset(gapminder, country == "Canada"))
## country continent year lifeExp pop gdpPercap
## 241 Canada Americas 1952 68.750 14785584 11367.16
## 242 Canada Americas 1957 69.960 17010154 12489.95
## 243 Canada Americas 1962 71.300 18985849 13462.49
## 244 Canada Americas 1967 72.130 20819767 16076.59
## 245 Canada Americas 1972 72.880 22284500 18970.57
## 246 Canada Americas 1977 74.210 23796400 22090.88
## 247 Canada Americas 1982 75.760 25201900 22898.79
## 248 Canada Americas 1987 76.860 26549700 26626.52
## 249 Canada Americas 1992 77.950 28523502 26342.88
## 250 Canada Americas 1997 78.610 30305843 28954.93
## 251 Canada Americas 2002 79.770 31902268 33328.97
## 252 Canada Americas 2007 80.653 33390141 36319.24
Stop and ask yourself ...
Do I want to create mini datasets for each level of some factor (or unique combination of several factors) ... in order to compute or graph something?
If YES, use proper data aggregation techniques or facetting in ggplot2
plots or conditioning in lattice
-- don’t subset the data. Or, more realistic, only subset the data as a temporary measure while you develop your elegant code for computing on or visualizing these data subsets.
If NO, then maybe you really do need to store a copy of a subset of the data. But seriously consider whether you can achieve your goals by simply using the subset =
argument of, e.g., the lm()
function, to limit computation to your excerpt of choice. Lots of functions offer a subset =
argument!
Copies and excerpts of your data clutter your workspace, invite mistakes, and sow general confusion. Avoid whenever possible.
Reality can also lie somewhere in between. You will find the workflows presented below can help you accomplish your goals with minimal creation of temporary, intermediate objects.
filter()
takes logical expressions and returns the rows for which all are TRUE
.
filter(gtbl, lifeExp < 29)
## Source: local data frame [2 x 6]
##
## country continent year lifeExp pop gdpPercap
## (fctr) (fctr) (dbl) (dbl) (dbl) (dbl)
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Rwanda Africa 1992 23.599 7290203 737.0686
filter(gtbl, country == "Rwanda")
## Source: local data frame [12 x 6]
##
## country continent year lifeExp pop gdpPercap
## (fctr) (fctr) (dbl) (dbl) (dbl) (dbl)
## 1 Rwanda Africa 1952 40.000 2534927 493.3239
## 2 Rwanda Africa 1957 41.500 2822082 540.2894
## 3 Rwanda Africa 1962 43.000 3051242 597.4731
## 4 Rwanda Africa 1967 44.100 3451079 510.9637
## 5 Rwanda Africa 1972 44.600 3992121 590.5807
## 6 Rwanda Africa 1977 45.000 4657072 670.0806
## 7 Rwanda Africa 1982 46.218 5507565 881.5706
## 8 Rwanda Africa 1987 44.020 6349365 847.9912
## 9 Rwanda Africa 1992 23.599 7290203 737.0686
## 10 Rwanda Africa 1997 36.087 7212583 589.9445
## 11 Rwanda Africa 2002 43.413 7852401 785.6538
## 12 Rwanda Africa 2007 46.242 8860588 863.0885
filter(gtbl, country %in% c("Rwanda", "Afghanistan"))
## Source: local data frame [24 x 6]
##
## country continent year lifeExp pop gdpPercap
## (fctr) (fctr) (dbl) (dbl) (dbl) (dbl)
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134
## 7 Afghanistan Asia 1982 39.854 12881816 978.0114
## 8 Afghanistan Asia 1987 40.822 13867957 852.3959
## 9 Afghanistan Asia 1992 41.674 16317921 649.3414
## 10 Afghanistan Asia 1997 41.763 22227415 635.3414
## .. ... ... ... ... ... ...
Compare with some base R code to accomplish the same things
gapminder[gapminder$lifeExp < 29, ] ## repeat `gapminder`, [i, j] indexing is distracting
subset(gapminder, country == "Rwanda") ## almost same as filter ... but wait ...
Before we go any further, we should exploit the new pipe operator that dplyr
imports from the magrittr
package by Stefan Bache. This is going to change your data analytical life. You no longer need to enact multi-operation commands by nesting them inside each other, like so many Russian nesting dolls. This new syntax leads to code that is much easier to write and to read.
Here's what it looks like: %>%
. The RStudio keyboard shortcut: Ctrl + Shift + M (Windows), Cmd + Shift + M (Mac).
Let's demo then I'll explain:
gapminder %>% head
## country continent year lifeExp pop gdpPercap
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134
This is equivalent to head(gapminder)
. This pipe operator takes the thing on the left-hand-side and pipes it into the function call on the right-hand-side -- literally, drops it in as the first argument.
Never fear, you can still specify other arguments to this function! To see the first 3 rows of Gapminder, we could say head(gapminder, 3)
or this:
gapminder %>% head(3)
## country continent year lifeExp pop gdpPercap
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
I've advised you to think "gets" whenever you see the assignment operator, <-
. Similary, you should think "then" whenever you see the pipe operator, %>%
.
You are probably not impressed yet, but the magic will soon happen.
Back to dplyr
...
Use select()
to subset the data on variables or columns. Here's a conventional call:
select(gtbl, year, lifeExp) ## tbl_df prevents TMI from printing
## Source: local data frame [1,704 x 2]
##
## year lifeExp
## (dbl) (dbl)
## 1 1952 28.801
## 2 1957 30.332
## 3 1962 31.997
## 4 1967 34.020
## 5 1972 36.088
## 6 1977 38.438
## 7 1982 39.854
## 8 1987 40.822
## 9 1992 41.674
## 10 1997 41.763
## .. ... ...
And here's similar operation, but written with the pipe operator and piped through head
:
gtbl %>%
select(year, lifeExp) %>%
head(4)
## Source: local data frame [4 x 2]
##
## year lifeExp
## (dbl) (dbl)
## 1 1952 28.801
## 2 1957 30.332
## 3 1962 31.997
## 4 1967 34.020
Think: "Take gtbl
, then select the variables year and lifeExp, then show the first 4 rows."
Here's the data for Cambodia, but only certain variables:
gtbl %>%
filter(country == "Cambodia") %>%
select(year, lifeExp)
## Source: local data frame [12 x 2]
##
## year lifeExp
## (dbl) (dbl)
## 1 1952 39.417
## 2 1957 41.366
## 3 1962 43.415
## 4 1967 45.415
## 5 1972 40.317
## 6 1977 31.220
## 7 1982 50.957
## 8 1987 53.914
## 9 1992 55.803
## 10 1997 56.534
## 11 2002 56.752
## 12 2007 59.723
and what a typical base R call would look like:
gapminder[gapminder$country == "Cambodia", c("year", "lifeExp")]
## year lifeExp
## 217 1952 39.417
## 218 1957 41.366
## 219 1962 43.415
## 220 1967 45.415
## 221 1972 40.317
## 222 1977 31.220
## 223 1982 50.957
## 224 1987 53.914
## 225 1992 55.803
## 226 1997 56.534
## 227 2002 56.752
## 228 2007 59.723
or, possibly?, a nicer look using base R's subset()
function:
subset(gapminder, country == "Cambodia", select = c(year, lifeExp))
## year lifeExp
## 217 1952 39.417
## 218 1957 41.366
## 219 1962 43.415
## 220 1967 45.415
## 221 1972 40.317
## 222 1977 31.220
## 223 1982 50.957
## 224 1987 53.914
## 225 1992 55.803
## 226 1997 56.534
## 227 2002 56.752
## 228 2007 59.723
We've barely scratched the surface of dplyr
but I want to point out key principles you may start to appreciate. If you're new to R or "programming with data", feel free skip this section and move on.
dplyr
's verbs, such as filter()
and select()
, are what's called pure functions. To quote from Wickham's Advanced R Programming book:
The functions that are the easiest to understand and reason about are pure functions: functions that always map the same input to the same output and have no other impact on the workspace. In other words, pure functions have no side effects: they don’t affect the state of the world in any way apart from the value they return.
In fact, these verbs are a special case of pure functions: they take the same flavor of object as input and output. Namely, a data.frame or one of the other data receptacles dplyr
supports. And finally, the data is always the very first argument of the verb functions.
This set of deliberate design choices, together with the new pipe operator, produces a highly effective, low friction domain-specific language for data analysis.
Go to the next block, dplyr
functions for a single dataset, for more dplyr
!
dplyr
official stuff
- package home on CRAN
- note there are several vignettes, with the introduction being the most relevant right now
- the one on window functions will also be interesting to you now
- development home on GitHub
- tutorial HW delivered (note this links to a DropBox folder) at useR! 2014 conference
RStudio dplyr
and tidyr
cheatsheet. Remember you can get to these via Help > Cheatsheets.
Excellent slides on pipelines and dplyr
by TJ Mahr, talk given to the Madison R Users Group.
Blog post Hands-on dplyr tutorial for faster data manipulation in R by Data School, that includes a link to an R Markdown document and links to videos
Cheatsheet I made for dplyr
join functions (not relevant yet but soon)