-
Notifications
You must be signed in to change notification settings - Fork 40
/
listener_elab_test.cpp
395 lines (345 loc) · 12.2 KB
/
listener_elab_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*-
/*
Copyright 2020 Alain Dargelas
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
* File: listener_elab
* Author: alain
*
* Created on May 4, 2020, 10:03 PM
*/
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
// Verifies that the forward declaration header compiles
#include "gtest/gtest.h"
#include "test_util.h"
#include "uhdm/VpiListener.h"
#include "uhdm/uhdm.h"
#include "uhdm/uhdm_forward_decl.h"
#include "uhdm/vpi_visitor.h"
using namespace UHDM;
//-------------------------------------------
// This self-contained example demonstrate how one can navigate the Folded Model
// of UHDM By extracting the complete information in between in the instance
// tree and the module definitions using the Listener Design Pattern
//-------------------------------------------
//-------------------------------------------
// Unit test design
std::vector<vpiHandle> build_designs(Serializer* s) {
std::vector<vpiHandle> designs;
// Design building
design* d = s->MakeDesign();
d->VpiName("design1");
//-------------------------------------------
// Module definition M1 (non elaborated)
module_inst* m1 = s->MakeModule_inst();
{
m1->VpiDefName("M1");
m1->VpiParent(d);
m1->VpiFile("fake1.sv");
m1->VpiLineNo(10);
}
//-------------------------------------------
// Module definition M2 (non elaborated)
module_inst* m2 = s->MakeModule_inst();
{
m2->VpiDefName("M2");
m2->VpiFile("fake2.sv");
m2->VpiLineNo(20);
m2->VpiParent(d);
// M2 Ports
VectorOfport* vp = s->MakePortVec();
port* p = s->MakePort();
p->VpiName("i1");
p->VpiDirection(vpiInput);
vp->push_back(p);
p = s->MakePort();
p->VpiName("o1");
p->VpiDirection(vpiOutput);
vp->push_back(p);
m2->Ports(vp);
// M2 Nets
VectorOfnet* vn = s->MakeNetVec();
logic_net* n = s->MakeLogic_net();
n->VpiName("i1");
vn->push_back(n);
n = s->MakeLogic_net();
n->VpiName("o1");
vn->push_back(n);
m2->Nets(vn);
// M2 continuous assignment
VectorOfcont_assign* assigns = s->MakeCont_assignVec();
cont_assign* cassign = s->MakeCont_assign();
assigns->push_back(cassign);
ref_obj* lhs = s->MakeRef_obj();
ref_obj* rhs = s->MakeRef_obj();
lhs->VpiName("o1");
rhs->VpiName("i1");
cassign->Lhs(lhs);
cassign->Rhs(rhs);
m2->Cont_assigns(assigns);
}
//-------------------------------------------
// Instance tree (Elaborated tree)
// Top level module
module_inst* m3 = s->MakeModule_inst();
VectorOfmodule_inst* v1 = s->MakeModule_instVec();
{
m3->VpiDefName("M1"); // Points to the module def (by name)
m3->VpiName("M1"); // Instance name
m3->VpiTopModule(true);
m3->Modules(v1);
m3->VpiParent(d);
}
//-------------------------------------------
// Sub Instance
module_inst* m4 = s->MakeModule_inst();
{
m4->VpiDefName("M2"); // Points to the module def (by name)
m4->VpiName("inst1"); // Instance name
m4->VpiFullName("M1.inst1"); // Instance full name
VectorOfport* inst_vp = s->MakePortVec(); // Create elaborated ports
m4->Ports(inst_vp);
port* p1 = s->MakePort();
p1->VpiName("i1");
inst_vp->push_back(p1);
port* p2 = s->MakePort();
p2->VpiName("o1");
inst_vp->push_back(p2);
// M2 Nets
VectorOfnet* vn = s->MakeNetVec(); // Create elaborated nets
logic_net* n = s->MakeLogic_net();
n->VpiName("i1");
n->VpiFullName("M1.inst.i1");
ref_obj* low_conn = s->MakeRef_obj();
low_conn->Actual_group(n);
low_conn->VpiName("i1");
p1->Low_conn(low_conn);
vn->push_back(n);
n = s->MakeLogic_net();
n->VpiName("o1");
n->VpiFullName("M1.inst.o1");
low_conn = s->MakeRef_obj();
low_conn->Actual_group(n);
low_conn->VpiName("o1");
p2->Low_conn(low_conn);
vn->push_back(n);
m4->Nets(vn);
}
// Create parent-child relation in between the 2 modules in the instance tree
v1->push_back(m4);
m4->VpiParent(m3);
//-------------------------------------------
// Create both non-elaborated and elaborated lists
VectorOfmodule_inst* allModules = s->MakeModule_instVec();
d->AllModules(allModules);
allModules->push_back(m1);
allModules->push_back(m2);
VectorOfmodule_inst* topModules = s->MakeModule_instVec();
d->TopModules(topModules);
topModules->push_back(
m3); // Only m3 goes there as it is the top level module
vpiHandle dh = s->MakeUhdmHandle(uhdmdesign, d);
designs.push_back(dh);
return designs;
}
//-------------------------------------------
// Elaboration based on the Listener pattern
class MyElaboratorListener : public VpiListener {
public:
MyElaboratorListener() {}
protected:
typedef std::map<std::string, const BaseClass*, std::less<>> ComponentMap;
void leaveDesign(const design* object, vpiHandle handle) override {
design* root = (design*)object;
root->VpiElaborated(true);
}
void enterModule_inst(const module_inst* object, vpiHandle handle) override {
bool topLevelModule = object->VpiTopModule();
const std::string_view instName = object->VpiName();
const std::string_view defName = object->VpiDefName();
bool flatModule =
instName.empty() && ((object->VpiParent() == 0) ||
((object->VpiParent() != 0) &&
(object->VpiParent()->VpiType() != vpiModule)));
// false when it is a module in a hierachy tree
std::cout << "Module: " << defName << " (" << instName
<< ") Flat:" << flatModule << ", Top:" << topLevelModule
<< std::endl;
if (flatModule) {
// Flat list of module (unelaborated)
flatComponentMap_.insert(
ComponentMap::value_type(object->VpiDefName(), object));
} else {
// Hierachical module list (elaborated)
// Collect instance elaborated nets
ComponentMap netMap;
if (object->Nets()) {
for (net* net : *object->Nets()) {
netMap.insert(ComponentMap::value_type(net->VpiName(), net));
}
}
// Push instance context on the stack
instStack_.push(std::make_pair(object, netMap));
// Check if Module instance has a definition
ComponentMap::iterator itrDef = flatComponentMap_.find(defName);
if (itrDef != flatComponentMap_.end()) {
const BaseClass* comp = (*itrDef).second;
int32_t compType = comp->VpiType();
switch (compType) {
case vpiModule: {
module_inst* defMod = (module_inst*)comp;
// 1) This section illustrates how one can walk the data model in
// the listener context
// Bind the cont assign lhs and rhs to elaborated nets
if (defMod->Cont_assigns()) {
for (cont_assign* assign :
*defMod->Cont_assigns()) { // explicit walking
net* lnet = nullptr;
net* rnet = nullptr;
const expr* lhs = assign->Lhs();
if (lhs->VpiType() == vpiRefObj) {
ref_obj* lref = (ref_obj*)lhs;
lnet = bindNet_(lref->VpiName());
}
const expr* rhs = assign->Rhs();
if (rhs->VpiType() == vpiRefObj) {
ref_obj* rref = (ref_obj*)rhs;
rnet = bindNet_(rref->VpiName());
}
// Client code has now access the cont assign and the
// hierarchical nets
std::cout << "[2] assign " << lnet->VpiFullName() << " = "
<< rnet->VpiFullName() << "\n";
}
}
// Or
// 2) This section illustrates how one can use the listener pattern
// all the way
// Trigger a listener of the definition module with the instance
// context on the stack (hirarchical nets) enterCont_assign listener
// method below will be trigerred to capture the same data as the
// walking above in (1)
if (vpiHandle defModule = NewVpiHandle(defMod)) {
MyElaboratorListener* listener = new MyElaboratorListener();
listener->listenModule_inst(defModule);
delete listener;
vpi_free_object(defModule);
}
break;
}
default:
break;
}
}
}
}
void leaveModule_inst(const module_inst* object, vpiHandle handle) override {
const std::string_view instName = object->VpiName();
bool flatModule =
instName.empty() && ((object->VpiParent() == 0) ||
((object->VpiParent() != 0) &&
(object->VpiParent()->VpiType() != vpiModule)));
// false when it is a module in a hierachy tree
if (!flatModule) instStack_.pop();
}
// Make full use of the listener pattern for all objects in a module, example
// with "cont assign":
void enterCont_assign(const cont_assign* assign, vpiHandle handle) override {
net* lnet = nullptr;
net* rnet = nullptr;
ref_obj* lref = nullptr;
ref_obj* rref = nullptr;
const expr* lhs = assign->Lhs();
if (lhs->VpiType() == vpiRefObj) {
lref = (ref_obj*)lhs;
}
const expr* rhs = assign->Rhs();
if (rhs->VpiType() == vpiRefObj) {
rref = (ref_obj*)rhs;
}
if (instStack_.size() == 0) {
// Flat module traversal
std::cout << "[1] assign " << lref->VpiName() << " = " << rref->VpiName()
<< "\n";
} else {
// In the instance context (through the trigered listener)
lnet = bindNet_(lref->VpiName());
rnet = bindNet_(rref->VpiName());
// Client code has now access the cont assign and the hierarchical nets
std::cout << "[3] assign " << lnet->VpiFullName() << " = "
<< rnet->VpiFullName() << "\n";
}
}
// Listen to processes, stmts....
private:
// Bind to a net in the parent instace
net* bindParentNet_(std::string_view name) {
std::pair<const BaseClass*, ComponentMap> mem = instStack_.top();
instStack_.pop();
ComponentMap& netMap = instStack_.top().second;
instStack_.push(mem);
ComponentMap::iterator netItr = netMap.find(name);
if (netItr != netMap.end()) {
return (net*)(*netItr).second;
}
return nullptr;
}
// Bind to a net in the current instace
net* bindNet_(std::string_view name) {
ComponentMap& netMap = instStack_.top().second;
ComponentMap::iterator netItr = netMap.find(name);
if (netItr != netMap.end()) {
return (net*)(*netItr).second;
}
return nullptr;
}
// Instance context stack
std::stack<std::pair<const BaseClass*, ComponentMap>> instStack_;
// Flat list of components (modules, udps, interfaces)
ComponentMap flatComponentMap_;
};
// TODO: this is way too coarse.
TEST(ListenerElabTest, RoundTrip) {
Serializer serializer;
const std::vector<vpiHandle>& designs = build_designs(&serializer);
std::string orig;
orig += "DUMP Design content:\n";
orig += designs_to_string(designs);
std::cout << orig;
bool elaborated = false;
for (auto design : designs) {
elaborated = vpi_get(vpiElaborated, design) || elaborated;
}
if (!elaborated) {
std::cout << "Elaborating...\n";
MyElaboratorListener* listener = new MyElaboratorListener();
listener->listenDesigns(designs);
delete listener;
}
std::string post_elab1 = designs_to_string(designs);
for (auto design : designs) {
elaborated = vpi_get(vpiElaborated, design) || elaborated;
}
EXPECT_TRUE(elaborated);
// 2nd elab. We expect no change
{
MyElaboratorListener* listener = new MyElaboratorListener();
listener->listenDesigns(designs);
delete listener;
}
std::string post_elab2 = designs_to_string(designs);
EXPECT_EQ(post_elab1, post_elab2);
}