Skip to content

Latest commit

 

History

History
149 lines (127 loc) · 4.42 KB

README.md

File metadata and controls

149 lines (127 loc) · 4.42 KB

phi3-py-experiment

Intelligent Chatbot with Phi-3 SLM and Streamlit Library

Let's build a chatbot with just Python using the Streamlit library, Ollama, and Microsoft Phi-3.

Streamlit:

turns data scripts into shareable web apps in minutes. All in pure Python. No front‑end experience required. You can find more info in the official Streamlit docs.

Ollama:

allows you to run open-source large language models, locally You can find more info in the official Ollama docs.

Phi-3 Mini:

is a 3.8B parameters, lightweight, state-of-the-art open model by Microsoft. You can find more info in the official Phi-3 Mini docs.

Steps

If you can't use pip then use conda instead to install the library. Ensure that you have install Ollama platform in to your computer, by visiting this link: Ollama.com

1 - Create a new conda environment

conda create --name envStreamPhi

2 - Activate the environment

conda activate envStreamPhi

3 - Clone StreamLit template

git clone https://github.com/streamlit/streamlit.git
conda install streamlit

4 - Install ollama & pull the phi-3 model

pip install ollama
ollama pull phi3

5 - Pull the Embeddings model:

ollama pull nomic-embed-text

6 - Test installation

streamlit hello

Build the AI assistant

In order to build the AI assistant, you have 2 choices : clone the repo and get all the code from the get-go or coding along with me.

I - First option :

1 - Clone the project from Github

git clone https://github.com/chrnthnkmutt/phi3_experiment.git

2 - run the application

streamlit run app.py

II - Second option:

code along 1 - Create your app.py file

app.py

2 - Add imports

import streamlit as st
import ollama

3 - Add the defacto message

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "Hello tehre, how can I help you, today?"}]

4 - Add the message history

for msg in st.session_state.messages:
    if msg["role"] == "user":
        st.chat_message(msg["role"], avatar="🧑‍💻").write(msg["content"])
    else:
        st.chat_message(msg["role"], avatar="🤖").write(msg["content"])

5 - Configure model

def generate_response():
    response = ollama.chat(model='phi3', stream=True, messages=st.session_state.messages)
    for partial_resp in response:
        token = partial_resp["message"]["content"]
        st.session_state["full_message"] += token
        yield token

6 - Configure the prompt

if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user", avatar="🧑‍💻").write(prompt)
    st.session_state["full_message"] = ""
    st.chat_message("assistant", avatar="🤖").write_stream(generate_response)
    st.session_state.messages.append({"role": "assistant", "content": st.session_state["full_message"]})   

7 - all the codebase of app.py

import streamlit as st
import ollama

st.title("💬 Phi3 Chatbot")

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "Hello tehre, how can I help you, today?"}]

### Write Message History
for msg in st.session_state.messages:
    if msg["role"] == "user":
        st.chat_message(msg["role"], avatar="🧑‍💻").write(msg["content"])
    else:
        st.chat_message(msg["role"], avatar="🤖").write(msg["content"])

## Configure the model
def generate_response():
    response = ollama.chat(model='phi3', stream=True, messages=st.session_state.messages)
    for partial_resp in response:
        token = partial_resp["message"]["content"]
        st.session_state["full_message"] += token
        yield token

if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user", avatar="🧑‍💻").write(prompt)
    st.session_state["full_message"] = ""
    st.chat_message("assistant", avatar="🤖").write_stream(generate_response)
    st.session_state.messages.append({"role": "assistant", "content": st.session_state["full_message"]})   

Run the Streamlit app

streamlit run app.py

Experimenting Phi-3 Vision on Jupyter Notebook

Visit the file name phi3-vis-ocr.ipynb and phi3-vis-gen.ipynb for execution the file for testing multimodal performance of Phi-3 Vision. Recommended to run on Google Collaboratory