-
Notifications
You must be signed in to change notification settings - Fork 3
/
01c_conv_network_bp.py
85 lines (69 loc) · 3.11 KB
/
01c_conv_network_bp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from multiprocessing import freeze_support
import matplotlib.pyplot as plt
import numpy as np
import scipy.interpolate
import scipy.ndimage.filters
import dataset.cifar10_dataset
from network import activation, weight_initializer
from network.layers.conv_to_fully_connected import ConvToFullyConnected
from network.layers.convolution_im2col import Convolution
from network.layers.dropout import Dropout
from network.layers.fully_connected import FullyConnected
from network.layers.max_pool import MaxPool
from network.model import Model
from network.optimizer import GDMomentumOptimizer
if __name__ == '__main__':
"""
"""
freeze_support()
num_iteration = 20
data = dataset.cifar10_dataset.load()
layers = [
# MaxPool(size=2, stride=2),
Convolution((8, 3, 4, 4), stride=2, padding=2, dropout_rate=0, activation=activation.tanh),
#MaxPool(size=2, stride=2),
Convolution((16, 8, 3, 3), stride=2, padding=1, dropout_rate=0, activation=activation.tanh),
#MaxPool(size=2, stride=2),
Convolution((32, 16, 3, 3), stride=2, padding=1, dropout_rate=0, activation=activation.tanh),
#MaxPool(size=2, stride=2),
ConvToFullyConnected(),
FullyConnected(size=64, activation=activation.tanh),
FullyConnected(size=10, activation=None, last_layer=True)
]
# -------------------------------------------------------
# Train with BP
# -------------------------------------------------------
model = Model(
layers=layers,
num_classes=10,
optimizer=GDMomentumOptimizer(lr=3*1e-2, mu=0.9),
)
print("\nRun training:\n------------------------------------")
stats = model.train(data_set=data, method='bp', num_passes=num_iteration, batch_size=64)
loss, accuracy = model.cost(*data.test_set())
print("\nResult:\n------------------------------------")
print('loss on test set: {}'.format(loss))
print('accuracy on test set: {}'.format(accuracy))
print("\nTrain statisistics:\n------------------------------------")
print("time spend during forward pass: {}".format(stats['forward_time']))
print("time spend during backward pass: {}".format(stats['backward_time']))
print("time spend during update pass: {}".format(stats['update_time']))
print("time spend in total: {}".format(stats['total_time']))
plt.title('Loss function')
plt.xlabel('epoch')
plt.ylabel('loss')
train_loss = scipy.ndimage.filters.gaussian_filter1d(stats['train_loss'], sigma=10)
plt.plot(np.arange(len(stats['train_loss'])), train_loss)
plt.plot(stats['valid_step'], stats['valid_loss'])
plt.legend(['train loss bp', 'validation loss bp'], loc='upper right')
plt.grid(True)
plt.show()
plt.title('Accuracy')
plt.xlabel('epoch')
plt.ylabel('accuracy')
train_accuracy = scipy.ndimage.filters.gaussian_filter1d(stats['train_accuracy'], sigma=10)
plt.plot(np.arange(len(stats['train_accuracy'])), train_accuracy)
plt.plot(stats['valid_step'], stats['valid_accuracy'])
plt.legend(['train accuracy bp', 'validation accuracy bp'], loc='lower right')
plt.grid(True)
plt.show()