-
Notifications
You must be signed in to change notification settings - Fork 3
/
03a_activation_function_evaluation.py
154 lines (122 loc) · 5.99 KB
/
03a_activation_function_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from multiprocessing import freeze_support
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage.filters
import scipy.interpolate
import dataset.mnist_dataset
from network import activation
from network.layers.conv_to_fully_connected import ConvToFullyConnected
from network.layers.fully_connected import FullyConnected
from network.model import Model
from network.optimizer import GDMomentumOptimizer
from network.weight_initializer import RandomNormal, RandomUniform
if __name__ == '__main__':
freeze_support()
colors = ['#6666ff', '#ff6666', '#66ff66', '#0000ff', '#ff0000', '#00ff00', '#000099', '#990000', '#009900']
lines = ['-', '-', '-', '--', '--', '--', ':', ':', ':']
layer_sizes = [
[800] * 2,
[400] * 10,
[240] * 50
]
iterations = [4] * 3
data = dataset.mnist_dataset.load('dataset/mnist')
statistics = []
labels = []
# Hyperbolic Tangens
for layer_size, num_passes in zip(layer_sizes, iterations):
layers = [ConvToFullyConnected()]
for size in layer_size:
layers.append(FullyConnected(size=size, activation=activation.tanh))
layers.append(FullyConnected(size=10, activation=None, last_layer=True))
model = Model(
layers=layers,
num_classes=10,
optimizer=GDMomentumOptimizer(lr=1e-2, mu=0.9)
)
print("\nRun training:\n------------------------------------")
stats = model.train(data_set=data, method='dfa', num_passes=num_passes, batch_size=64)
loss, accuracy = model.cost(*data.test_set())
print("\nResult:\n------------------------------------")
print('loss on test set: {}'.format(loss))
print('accuracy on test set: {}'.format(accuracy))
print("\nTrain statisistics:\n------------------------------------")
print("time spend during forward pass: {}".format(stats['forward_time']))
print("time spend during backward pass: {}".format(stats['backward_time']))
print("time spend during update pass: {}".format(stats['update_time']))
print("time spend in total: {}".format(stats['total_time']))
labels.append("{}x{} tanh".format(len(layer_size), layer_size[0]))
statistics.append(stats)
# Sigmoid
for layer_size, num_passes in zip(layer_sizes, iterations):
layers = [ConvToFullyConnected()]
for size in layer_size:
layers.append(FullyConnected(
size=size,
activation=activation.sigmoid
))
layers.append(FullyConnected(size=10, activation=None, last_layer=True))
model = Model(
layers=layers,
num_classes=10,
optimizer=GDMomentumOptimizer(lr=1e-2, mu=0.9)
)
print("\nRun training:\n------------------------------------")
stats = model.train(data_set=data, method='dfa', num_passes=num_passes, batch_size=64)
loss, accuracy = model.cost(*data.test_set())
print("\nResult:\n------------------------------------")
print('loss on test set: {}'.format(loss))
print('accuracy on test set: {}'.format(accuracy))
print("\nTrain statisistics:\n------------------------------------")
print("time spend during forward pass: {}".format(stats['forward_time']))
print("time spend during backward pass: {}".format(stats['backward_time']))
print("time spend during update pass: {}".format(stats['update_time']))
print("time spend in total: {}".format(stats['total_time']))
labels.append("{}x{} Sigmoid".format(len(layer_size), layer_size[0]))
statistics.append(stats)
for layer_size, num_passes in zip(layer_sizes, iterations):
layers = [ConvToFullyConnected()]
for size in layer_size:
layers.append(FullyConnected(
size=size,
activation=activation.leaky_relu,
weight_initializer=RandomUniform(low=-np.sqrt(1.0/size), high=np.sqrt(1.0/size)),
fb_weight_initializer=RandomUniform(low=-np.sqrt(1.0/size), high=np.sqrt(1.0/size))
))
layers.append(FullyConnected(size=10, activation=None, last_layer=True))
model = Model(
layers=layers,
num_classes=10,
optimizer=GDMomentumOptimizer(lr=1e-3, mu=0.9)
)
print("\nRun training:\n------------------------------------")
stats = model.train(data_set=data, method='dfa', num_passes=num_passes, batch_size=64)
loss, accuracy = model.cost(*data.test_set())
print("\nResult:\n------------------------------------")
print('loss on test set: {}'.format(loss))
print('accuracy on test set: {}'.format(accuracy))
print("\nTrain statisistics:\n------------------------------------")
print("time spend during forward pass: {}".format(stats['forward_time']))
print("time spend during backward pass: {}".format(stats['backward_time']))
print("time spend during update pass: {}".format(stats['update_time']))
print("time spend in total: {}".format(stats['total_time']))
labels.append("{}x{} leaky ReLU".format(len(layer_size), layer_size[0]))
statistics.append(stats)
plt.title('Loss vs epoch')
plt.xlabel('epoch')
plt.ylabel('loss')
for color, line, stats in zip(colors, lines, statistics):
train_loss = scipy.ndimage.filters.gaussian_filter1d(stats['train_loss'], sigma=10)
plt.plot(np.arange(len(stats['train_loss'])), train_loss, linestyle=line, color=color)
plt.legend(labels, loc='best')
plt.grid(True)
plt.show()
plt.title('Accuracy vs epoch')
plt.xlabel('epoch')
plt.ylabel('accuracy')
for color, line, stats in zip(colors, lines, statistics):
train_accuracy = scipy.ndimage.filters.gaussian_filter1d(stats['train_accuracy'], sigma=10)
plt.plot(np.arange(len(stats['train_accuracy'])), train_accuracy, linestyle=line, color=color)
plt.legend(labels, loc='lower right')
plt.grid(True)
plt.show()