-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
executable file
·183 lines (156 loc) · 6.86 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from collections import defaultdict
import numpy as np
import random
import scipy.io as sio
import cPickle
import h5py
basedir = os.path.dirname(os.path.realpath(__file__))
data_path = os.path.join(basedir, '../../../bighdd5/Paul/mosi/')
dataset_path = data_path
truth_path = dataset_path + 'Meta_data/boundaries_sentimentint_avg.csv'
#openface_path = dataset_path + "Features/Visual/OPEN_FACE/Segmented/"
openface_path = dataset_path + "Features/Visual/OpenfaceRaw/"
facet_path = dataset_path + "Features/Visual/FACET_GIOTA/"
covarep_path = dataset_path + "Features/Audio/raw/"
transcript_path = dataset_path + 'Transcript/SEGMENT_ALIGNED/'
word2ix_path = data_path + 'glove_word_embedding/word2ix_300_mosi.pkl'
word_embedding_path = data_path + "glove_word_embedding/glove_300_mosi.pkl"
def load_word_embedding():
with open(word_embedding_path) as f:
return cPickle.load(f)
'''
def load_word_embedding(word2ix, embedding_vecor_length):
word_embedding_path = word_embedding_path_prefix + str(embedding_vecor_length) + "d.txt"
print "## Loading word embedding: ", word_embedding_path
with open(word_embedding_path) as f:
lines = f.read().split("\n")
word_num = len(word2ix.keys())
word_embedding = [[0] * embedding_vecor_length for x in range(word_num + 1)] #[[0] * embedding_vecor_length]
for l in lines:
l = l.split(' ')
word = l[0].upper()
if (word in word2ix) and word2ix[word] != 0:
word_embedding[word2ix[word]] = [float(x) for x in l[1:]]
return np.array(word_embedding)
'''
def load_word2ix():
with open(word2ix_path) as f:
word2ix = cPickle.load(f)
return word2ix
# load meta data truth_dict[video_id][seg_id]
def load_truth():
truth_dict = defaultdict(dict)
with open(truth_path) as f:
lines = f.read().split("\r\n")
for line in lines:
if line != '':
line = line.split(",")
truth_dict[line[2]][line[3]] = {'start_time': float(line[0]), 'end_time':float(line[1]), 'sentiment':float(line[4])}
return truth_dict
def load_facet(truth_dict):
for video_index in truth_dict:
file_name = facet_path + video_index + '.FACET_out.csv'
#print file_name
with open(file_name) as f:
lines = f.read().split('\r\n')[1:]
lines = [[float(x) for x in line.split(',')] for line in lines if line != '']
for seg_index in truth_dict[video_index]:
for w in truth_dict[video_index][seg_index]['data']:
start_frame = int(w['start_time_clip']*30)
end_frame = int(w['end_time_clip']*30)
ft = [line[5:] for line in lines[start_frame:end_frame]]
if ft == []:
avg_ft = np.zeros(len(lines[0]) - 5)
else:
#print np.array(ft).shape
#print ft[0]
avg_ft = np.mean(ft,0)
w['facet'] = avg_ft
def load_covarep(truth_dict):
for video_index in truth_dict:
file_name = covarep_path + video_index + '.mat'
fts = sio.loadmat(file_name)['features']
#print fts.shape
for seg_index in truth_dict[video_index]:
for w in truth_dict[video_index][seg_index]['data']:
start_frame = int(w['start_time_clip']*100)
end_frame = int(w['end_time_clip']*100)
ft = fts[start_frame:end_frame]
if ft.shape[0] == 0:
avg_ft = np.zeros(ft.shape[1])
else:
#print np.array(ft).shape
#print ft[0]
avg_ft = np.mean(ft,0)
avg_ft[np.isnan(avg_ft)] = 0
avg_ft[np.isneginf(avg_ft)] = 0
w['covarep'] = avg_ft
def load_transcript(truth_dict, word2ix):
for video_index in truth_dict:
for seg_index in truth_dict[video_index]:
file_name = transcript_path + video_index + '_' + seg_index
truth_dict[video_index][seg_index]['data'] = []
with open(file_name) as f:
lines = f.read().split("\n")
for line in lines:
if line == '':
continue
line = line.split(',')
truth_dict[video_index][seg_index]['data'].append({'word_ix': word2ix[line[1]], 'word': line[1], 'start_time_seg': float(line[2]), 'end_time_seg':float(line[3]), 'start_time_clip':float(line[4]), 'end_time_clip':float(line[5])})
def split_data(tr_proportion, truth_dict):
data = [(vid, truth_dict[vid]) for vid in truth_dict]
data.sort(key = lambda x: x[0])
tr_split = int(round(len(data) * tr_proportion))
train = data[:52]
valid = data[52:62]
test = data[62:]
print len(train)
print len(valid) #0.1514 62 -> 52, 10, 31
print len(test)
return train, valid, test
def get_data(dataset, max_segment_len):
data = {'facet': [], 'covarep': [], 'text': [], 'lengths': [], 'label': [], 'id': []}
for i in range(len(dataset)):
v = dataset[i][1]
for seg_id in v:
fts = v[seg_id]['data']
facet, text, covarep = [], [], []
length = len(fts)
if max_segment_len >= len(fts):
for j in range(max_segment_len-len(fts)):
text.append(0)
covarep.append(np.zeros(len(fts[0]['covarep'])))
facet.append(np.zeros(len(fts[0]['facet'])))
for w in fts:
text.append(w['word_ix'])
covarep.append(w['covarep'])
facet.append(w['facet'])
else: # max_segment_len < len(text), take last max_segment_len of text
for w in fts[len(fts)-max_segment_len:]:
text.append(w['word_ix'])
covarep.append(w['covarep'])
facet.append(w['facet'])
data['facet'].append(facet)
data['covarep'].append(covarep)
data['text'].append(text)
data['lengths'].append(length)
data['label'].append(v[seg_id]['sentiment'])
data['id'].append(dataset[i][0]+'_'+seg_id)
data['facet'] = np.array(data['facet'])
data['covarep'] = np.array(data['covarep'])
data['text'] = np.array(data['text'])
data['lengths'] = np.array(data['lengths'])
data['label'] = np.array(data['label'])
return data
def load_word_level_features(max_segment_len, tr_proportion):
word2ix = load_word2ix()
truth_dict = load_truth()
load_transcript(truth_dict, word2ix)
load_facet(truth_dict)
load_covarep(truth_dict)
train, valid, test = split_data(tr_proportion, truth_dict)
train = get_data(train, max_segment_len)
valid = get_data(valid, max_segment_len)
test = get_data(test, max_segment_len)
return train, valid, test