forked from CMU-TBD/Group_based_navigation_v1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgroup_shape_prediction.py
246 lines (216 loc) · 10.1 KB
/
group_shape_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
import torch
import cv2
from grouping import Grouping
from group_shape_generation import GroupShapeGeneration
from img_process import ProcessImage, DrawGroupShape
from model import ConvAutoencoder
import general_helpers as gh
class GroupShapePrediction(object):
def __init__(self, msg, path):
# No need to do grouping here for msg
self.msg = msg
self.cuda = torch.device('cuda:0')
ckpt = path
self.model = ConvAutoencoder()
self.model.load_state_dict(torch.load(ckpt, map_location='cpu'))
self.model.eval()
self.model.to(self.cuda)
print('Model initialized!')
return
def _load_parameters(self):
# Initialize parameters to prepare for DBSCAN
pos = 2.0
ori = 30
vel = 1.0
params = {'position_threshold': pos,
'orientation_threshold': ori / 180.0 * np.pi,
'velocity_threshold': vel,
'velocity_ignore_threshold': 0.5}
return params
def _predict_sequence(self, input_sequence, pred_length):
confidence_threshold = 0.5
inputs = np.transpose(np.array(input_sequence), (3, 0, 1, 2))
inputs_tensor = np.expand_dims(inputs, 0)
inputs_tensor = torch.tensor(inputs_tensor, dtype=torch.float32, device=self.cuda)
outputs_tensor = self.model(inputs_tensor)
outputs = outputs_tensor.data.cpu().numpy()
output_sequence = np.transpose(outputs[0, :, :, :, :], (1, 2, 3, 0))
for i in range(pred_length):
output_sequence[i] = np.round(output_sequence[i] >= confidence_threshold)
return output_sequence
def _predict_from_vertices(self, vertice_sequence, pred_seq_length):
dgs = DrawGroupShape(self.msg)
dgs.set_center(vertice_sequence)
dgs.set_aug(angle=0)
img_sequence = []
for i, v in enumerate(vertice_sequence):
canvas = np.zeros((self.msg.frame_height, self.msg.frame_width, 3), dtype=np.uint8)
img = dgs.draw_group_shape(v, canvas, center=True, aug=False)
img_sequence.append(img)
pimg = ProcessImage(self.msg, img_sequence)
for i, img in enumerate(img_sequence):
img_sequence[i] = pimg.process_image(img, debug=False)
pred_img_sequence = self._predict_sequence(img_sequence, pred_seq_length)
group_pred_img_sequence = []
for i, img in enumerate(pred_img_sequence):
#img = np.round(np.repeat(img, 3, axis=2)) * 255
img = np.round(np.repeat(img, 3, axis=2))
pred_img = pimg.reverse_process_image(img, debug=True)
pred_img = dgs.reverse_move_center_img(pred_img)
group_pred_img_sequence.append(pred_img[:, :, 0])
return group_pred_img_sequence
def _compile_group_pred(self, all_pred_img_sequences, pred_length, num_groups):
fnl_pred_img_sequence = []
for i in range(pred_length):
canvas = np.zeros((self.msg.frame_height, self.msg.frame_width), dtype=np.uint8)
for j in range(num_groups):
img = all_pred_img_sequences[j][i]
img = np.round(img)
canvas += img
fnl_pred_img_sequence.append(np.clip(canvas, 0, 1))
return fnl_pred_img_sequence
def predict(self, positions, velocities, const):
if (self.msg.dataset == "ucy") and (self.msg.flag == 2):
pos = 1.5
ori = 15
vel = 0.5
params = {'position_threshold': pos,
'orientation_threshold': ori / 180.0 * np.pi,
'velocity_threshold': vel,
'velocity_ignore_threshold': 0.5}
else:
params = self._load_parameters()
position_array = []
velocity_array = []
num_people = len(positions)
if num_people == 0:
raise Exception('People Needed!')
seq_length = len(positions[0])
pred_seq_length = 8
for i in range(num_people):
position_array.append(positions[i][-1])
velocity_array.append(velocities[i][-1])
labels = Grouping.grouping(position_array, velocity_array, params)
all_labels = np.unique(labels)
num_groups = len(all_labels)
all_pred_img_sequences = []
for ei, curr_label in enumerate(all_labels):
group_positions = []
group_velocities = []
for i, l in enumerate(labels):
if l == curr_label:
group_positions.append(positions[i])
group_velocities.append(velocities[i])
vertice_sequence = []
for i in range(seq_length):
frame_positions = []
frame_velocities = []
for j in range(len(group_positions)):
frame_positions.append(group_positions[j][i])
frame_velocities.append(group_velocities[j][i])
vertices = GroupShapeGeneration.draw_social_shapes(frame_positions,
frame_velocities,
False,
const)
vertice_sequence.append(vertices)
group_pred_img_sequence = self._predict_from_vertices(vertice_sequence, pred_seq_length)
all_pred_img_sequences.append(group_pred_img_sequence)
return self._compile_group_pred(all_pred_img_sequences, pred_seq_length, num_groups)
def laser_predict(self, positions, velocities, const):
if (self.msg.dataset == "ucy") and (self.msg.flag == 2):
pos = 1.5
ori = 15
vel = 0.5
params = {'position_threshold': pos,
'orientation_threshold': ori / 180.0 * np.pi,
'velocity_threshold': vel,
'velocity_ignore_threshold': 0.5}
else:
params = self._load_parameters()
# Nearest geo-center way of building history
time_steps = len(positions)
group_pos_series = []
group_vel_series = []
group_centers = []
group_vel_centers = []
# Get group scan pts, vels, centers & center_vels for each frame
for i in range(time_steps):
pos = positions[i]
vel = velocities[i]
labels = Grouping.grouping(pos, vel, params)
all_labels = np.unique(labels)
num_groups = len(all_labels)
all_group_pos = []
all_group_vel = []
centers = []
vel_centers = []
for j, curr_label in enumerate(all_labels):
group_positions = []
group_velocities = []
center_x = 0
center_y = 0
center_vx = 0
center_vy = 0
for k, l in enumerate(labels):
if curr_label == l:
group_positions.append(pos[k])
group_velocities.append(vel[k])
center_x += pos[k][0]
center_y += pos[k][1]
center_vx += vel[k][0]
center_vy += vel[k][1]
all_group_pos.append(group_positions)
all_group_vel.append(group_velocities)
num_members = len(group_positions)
center_x /= num_members
center_y /= num_members
center_vx /= num_members
center_vy /= num_members
centers.append(np.array([center_x, center_y]))
vel_centers.append(np.array([center_vx, center_vy]))
group_pos_series.append(all_group_pos)
group_vel_series.append(all_group_vel)
group_centers.append(centers)
group_vel_centers.append(vel_centers)
temp_threshold = 2.5 / 10 #m/s / fps
num_curr_groups = len(group_pos_series[-1])
pred_seq_length = 8
all_pred_img_sequences = []
for i in range(num_curr_groups):
position_seq = [group_pos_series[-1][i]]
velocity_seq = [group_vel_series[-1][i]]
config = group_centers[-1][i]
break_idx = None
save_idx = i
# search nearest centers for each prev frame
for j in range(time_steps-2, -1, -1):
points = group_centers[j]
min_dist, min_idx = gh.find_least_dist(config, points)
if min_dist > temp_threshold:
break_idx = j
break
else:
position_seq.append(group_pos_series[j][min_idx])
velocity_seq.append(group_vel_series[j][min_idx])
config = group_centers[j][min_idx]
save_idx = min_idx
# if discrepancy, linear back-prop
if not (break_idx == None):
position_last = group_pos_series[break_idx + 1][save_idx]
velocity_last = group_vel_series[break_idx + 1][save_idx]
vel = group_vel_centers[break_idx + 1][save_idx]
for j in range(break_idx, -1, -1):
position_last = list(np.array(position_last) - vel / 10)
position_seq.append(position_last)
velocity_seq.append(velocity_last)
vertice_sequence = []
for j in range(time_steps-1, -1, -1):
vertices = GroupShapeGeneration.draw_social_shapes(position_seq[j],
velocity_seq[j],
True,
const)
vertice_sequence.append(vertices)
group_pred_img_sequence = self._predict_from_vertices(vertice_sequence, pred_seq_length)
all_pred_img_sequences.append(group_pred_img_sequence)
return self._compile_group_pred(all_pred_img_sequences, pred_seq_length, num_curr_groups)