forked from sriyash421/Pred2Nav
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_mpc.py
171 lines (136 loc) · 5.04 KB
/
evaluation_mpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import logging
import sys
import matplotlib.pyplot as plt
import numpy as np
import torch
from crowd_nav.configs.config_vecmpc import Config
from crowd_sim.envs.crowd_sim import CrowdSim
from crowd_sim.envs.utils.info import *
def evaluate(config, env, visualize=False):
if visualize:
fig, ax = plt.subplots(figsize=(7, 7))
ax.set_xlim(-6, 6)
ax.set_ylim(-6, 6)
ax.set_xlabel('x(m)', fontsize=16)
ax.set_ylabel('y(m)', fontsize=16)
plt.ion()
plt.show()
env.render_axis = ax
test_size = config.env.test_size
eval_episode_rewards = []
success_times = []
collision_times = []
timeout_times = []
path_lengths = []
chc_total = []
success = 0
collision = 0
timeout = 0
too_close = 0.
min_dist = []
cumulative_rewards = []
collision_cases = []
timeout_cases = []
gamma = 0.99
for k in range(test_size):
obs = env.reset()
done = False
rewards = []
stepCounter = 0
episode_rew = 0
global_time = 0.0
path = 0.0
chc = 0.0
last_pos = env.robot.get_full_state().get_position()
last_angle = env.robot.get_full_state().get_sim_heading()
while not done:
if not done:
global_time = env.global_time
if visualize:
env.render()
# Obser reward and next obs
action = env.robot.act(obs)
obs, rew, done, info = env.step(action)
path = path + np.linalg.norm(env.robot.get_full_state().get_position() - last_pos)
cur_angle = env.robot.get_full_state().get_sim_heading()
chc = chc + abs(cur_angle - last_angle)
last_pos = env.robot.get_full_state().get_position()
last_angle = cur_angle
rewards.append(rew)
if isinstance(info, Danger):
too_close = too_close + 1
min_dist.append(info.min_dist)
episode_rew += rew
# for info in infos:
# if 'episode' in info.keys():
# eval_episode_rewards.append(info['episode']['r'])
eval_episode_rewards.append(episode_rew)
print('')
print('Reward={}'.format(episode_rew))
print('Episode', k, 'ends in', stepCounter)
path_lengths.append(path)
chc_total.append(chc)
if isinstance(info, ReachGoal):
success += 1
success_times.append(global_time)
print('Success')
elif isinstance(info, Collision):
collision += 1
collision_cases.append(k)
collision_times.append(global_time)
print('Collision')
elif isinstance(info, Timeout):
timeout += 1
timeout_cases.append(k)
timeout_times.append(env.time_limit)
print('Time out')
else:
raise ValueError('Invalid end signal from environment')
cumulative_rewards.append(sum([pow(gamma, t * env.robot.time_step * env.robot.v_pref)
* reward for t, reward in enumerate(rewards)]))
env.robot.policy.reset()
success_rate = success / test_size
collision_rate = collision / test_size
timeout_rate = timeout / test_size
assert success + collision + timeout == test_size
avg_nav_time = sum(success_times) / len(
success_times) if success_times else env.time_limit # env.env.time_limit
extra_info = ''
phase = 'test'
print(
'{:<5} {}has success rate: {:.2f}, collision rate: {:.2f}, timeout rate: {:.2f}, '
'nav time: {:.2f}, total reward: {:.4f}'.
format(phase.upper(), extra_info, success_rate, collision_rate, timeout_rate, avg_nav_time,
np.average(cumulative_rewards)))
if phase in ['val', 'test']:
total_time = sum(success_times + collision_times + timeout_times)
if min_dist:
avg_min_dist = np.average(min_dist)
else:
avg_min_dist = float("nan")
print('Frequency of being in danger: %.2f and average min separate distance in danger: %.2f',
too_close * env.robot.time_step / total_time, avg_min_dist)
print(
'{:<5} {}has average path length: {:.2f}, CHC: {:.2f}'.
format(phase.upper(), extra_info, sum(path_lengths) / test_size, sum(chc_total) / test_size))
print('Collision cases: ' + ' '.join([str(x) for x in collision_cases]))
print('Timeout cases: ' + ' '.join([str(x) for x in timeout_cases]))
print(" Evaluation using {} episodes: mean reward {:.5f}\n".format(
len(eval_episode_rewards), np.mean(eval_episode_rewards)))
def main_config(config):
env = CrowdSim()
env.configure(config)
env.thisSeed = 0
env.nenv = 1
env.seed(0)
evaluate(config, env, False)
def main():
config = Config('cv')
env = CrowdSim()
env.configure(config)
env.thisSeed = 0
env.nenv = 1
env.seed(0)
evaluate(config, env, True)
if __name__ == "__main__":
main()