forked from rohjunha/multiple-topologies-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_evaluation_metrics.py
63 lines (50 loc) · 1.73 KB
/
compute_evaluation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import glob
import os
import numpy as np
import pandas as pd
def generate_stats(args):
logs_dir = os.path.join(args.base_path, args.method + '/' + str(args.num_agent) + 'agent/' + args.type)
logs_path = glob.glob(logs_dir + "/*.csv")[-1]
print (logs_path)
logs = pd.read_csv(logs_path)
collisions = logs['collision']
time_taken = logs['time']
ego_time_taken = logs['ego_time']
coll_mean, coll_std = np.mean(collisions), np.std(collisions)
total_t = 0.
ego_total_t = 0.
t_s = []
ego_t_s = []
for i, col in enumerate(collisions):
if col == 0:
t_s.append(time_taken[i])
ego_t_s.append(ego_time_taken[i])
else:
t_s.append(30.0)
ego_t_s.append(30.0)
time_mean = np.mean(t_s)
time_std = np.std(t_s)
ego_time_mean = np.mean(ego_t_s)
ego_time_std = np.std(ego_t_s)
print ("Collision: ", coll_mean * 100)
print ("Time taken: ", time_mean, " +/- ", time_std)
print ("Ego Time taken: ", ego_time_mean, " +/- ", ego_time_std)
def main():
argparser = argparse.ArgumentParser(description='Generate mean/percentage numbers from experiment logs')
argparser.add_argument(
'--base-path',
help='base path of logs')
argparser.add_argument(
'--type', type=str,
choices=["easy", "hard"],
help="select case for scenario",
default="easy")
argparser.add_argument('--num-agent', type=int, default=2)
argparser.add_argument('--method', type=str,
choices=["autopilot", "mfp", "gn"],
default="autopilot")
args = argparser.parse_args()
generate_stats(args)
if __name__ == '__main__':
main()