-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacorrelogram
111 lines (89 loc) · 3.72 KB
/
acorrelogram
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
## (6) acorrelogram ##
# DESCRIPTION: calculates Moran's I (acoef = "I") or Geary's c (acoef = "c") for each bin in 'nblist'.
# Significance of autocorrelation coefficient is tested via spdep::moran.test or spdep::geary.test.
# RETURNS: S3 class object of type 'spclist'/'list'.
# 'spclist' can be passed to plot.spclist() to plot the correlogram.
# REQUIRES: a data vector (x) and corresponding "nblist" from binneR().
# ARGUMENTS:
#
# acoef : the autocorrelation coefficient to be calculated (default = "I")
#
# "I": Moran's I
# "c": Geary's c
#
# ... : other arguments to be passed to moran.test() or geary.test()
# START
acorrelogram <- function(x, nblist, acoef = "I", ...){
if (class(nblist)[1] != "nblist"){
stop("This function requires an object of class 'nblist'; use binneR() to create an 'nblist' object.")
}
if (is.null(acoef) == TRUE){
stop("You must specify the type of autocorrelation coefficient as 'I' or 'c'")
}
if (length(x) != length(nblist$bin_list[[1]]$neighbours)){
stop("Length of vector x is not equal to the number of samples used to create the nb object.")
}
auto_vect <- numeric(length(nblist$bin_list))
Pval <- numeric(length(auto_vect))
if (acoef == "I"){
measure <- "Moran's I"
auto_exp <- -(length(x) - 1) ^ -1
for (i in 1:length(nblist$bin_list)){
I_bin <- spdep::moran(x,
listw = nblist$bin_list[[i]],
n = length(nblist$bin_list[[i]]$neighbours),
S0 = spdep::Szero(nblist$bin_list[[i]]),
zero.policy = TRUE)
if (I_bin$I >= auto_exp){
I_test <- spdep::moran.test(x,
listw=nblist$bin_list[[i]],
alternative="greater",
zero.policy=TRUE,
...)
} else if(I_bin$I < auto_exp){
I_test <- spdep::moran.test(x,
listw=nblist$bin_list[[i]],
alternative="less",
zero.policy=TRUE,
...)
}
auto_vect[i] <- I_test$estimate[1]
Pval[i] <- I_test$p.value
}
} else if (acoef=="c"){
measure <- "Geary's c"
auto_exp <- 1
for(i in 1:length(nblist$bin_list)){
c_bin <- spdep::geary(x,
listw = nblist$bin_list[[i]],
n = length(nblist$bin_list[[i]]$neighbours),
n1 = length(nblist$bin_list[[i]]$neighbours) - 1,
S0 = spdep::Szero(nblist$bin_list[[i]]),
zero.policy = TRUE)
if(c_bin$C >= auto_exp){
c_test <- spdep::geary.test(x,
listw = nblist$bin_list[[i]],
alternative = "less",
zero.policy = TRUE,
...)
} else if (c_bin$C < auto_exp){
c_test <- spdep::geary.test(x,
listw = nblist$bin_list[[i]],
alternative = "greater",
zero.policy = TRUE,
...)
}
auto_vect[i] <- c_test$estimate[1]
Pval[i] <- c_test$p.value
}
}
autolist <-list(coefficient = measure,
null_expected = auto_exp,
estimates = auto_vect,
P_vals = Pval,
type = nblist$type,
boundaries = nblist$boundaries)
class(autolist) <- c("spclist", class(autolist))
return(autolist)
}
# END