forked from songrun/SeamAwareDecimater
-
Notifications
You must be signed in to change notification settings - Fork 0
/
half_edge.cpp
158 lines (135 loc) · 4.96 KB
/
half_edge.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include "half_edge.h"
#include <Eigen/Geometry>
#include <iostream>
#include <functional>
VertexBundle::VertexBundle(int new_vi, int new_tci) : vi( new_vi ), tci( new_tci ) {}
bool operator==( const VertexBundle& lhs, const VertexBundle& rhs )
{
return lhs.vi == rhs.vi && lhs.tci == rhs.tci;
}
bool operator!=( const VertexBundle& lhs, const VertexBundle& rhs )
{
return !( lhs == rhs );
}
HalfEdge::HalfEdge(int a, int b) : fi(a), ki(b) {}
Bundle get_half_edge_bundle(
int e,
Eigen::MatrixXi & E,
Eigen::MatrixXi & EF,
Eigen::MatrixXi & EI,
Eigen::MatrixXi & F,
Eigen::MatrixXi & FTC
)
{
Bundle result;
result.reserve(2);
for( int side = 0; side < 2; ++side ) {
const int face_index = EF( e, side );
const int opposite_vertex = EI( e, side );
// Normally F and FTC have the same number of faces.
// For meshes with boundaries, though, they won't.
// The outside-of-the-mesh side of the boundary
// edge will be connected with new faces to a vertex at infinity.
// These new faces exist in F, but not FT.
// In case someone accesses one of these edges to infinity,
// return a bogus texture coordinate (-1).
// UPDATE: They now do have the same number of faces;
// FTC is also augmented with a vertex to infinity.
HalfEdge he( face_index, opposite_vertex );
int v1 = F ( face_index, (opposite_vertex + 1)%3);
int t1 = FTC( face_index, (opposite_vertex + 1)%3);
/*
int t1 = face_index < FTC.rows()
? FTC( face_index, (opposite_vertex + 1)%3)
: -1
;
*/
int v2 = F ( face_index, (opposite_vertex + 2)%3);
int t2 = FTC( face_index, (opposite_vertex + 2)%3);
/*
int t2 = face_index < FTC.rows()
? FTC( face_index, (opposite_vertex + 2)%3)
: -1
;
*/
he.p[0] = VertexBundle(v1, t1);
he.p[1] = VertexBundle(v2, t2);
result.push_back( he );
}
return result;
}
/*
BundleKey bundle_key(
const int e,
const Eigen::MatrixXi & E)
{
assert( E.cols() == 2 );
assert( e < E.rows() );
int v1 = E(e,0);
int v2 = E(e,1);
if( v1 > v2 ) std::swap(v1,v2);
return std::make_pair(v1,v2);
}
*/
void print_bundle( const Bundle & b )
{
using namespace std;
for(int i=0; i<b.size(); i++) {
cout << "Half Edge #: " << i << endl;
cout << "vi: " << b[i].p[0].vi << " ti: " << b[i].p[0].tci << endl;
cout << "vi: " << b[i].p[1].vi << " ti: " << b[i].p[1].tci << endl;
cout << "fi: " << b[i].fi << endl;
cout << "ki: " << b[i].ki << endl;
}
}
bool contains_edge( const EdgeMap& edges, int v1, int v2 )
{
assert( v1 != v2 );
assert( v1 >= 0 );
assert( v2 >= 0 );
const bool result1 = edges.count( v1 ) && edges.at( v1 ).count( v2 );
const bool result2 = edges.count( v2 ) && edges.at( v2 ).count( v1 );
assert( result1 == result2 );
return result1;
}
void collapse_edge( EdgeMap& edges, int vertex_to_remove, int vertex_collapsing_into )
{
assert( contains_edge( edges, vertex_to_remove, vertex_collapsing_into ) );
// This should be true from the way we use it.
assert( vertex_collapsing_into < vertex_to_remove );
// For every neighbor of `vertex_to_remove`, replace it with `vertex_collapsing_into`.
const std::unordered_set< int > neighbors( edges[ vertex_to_remove ] );
for( const auto& n : neighbors ) {
edges[ n ].erase( vertex_to_remove );
edges[ n ].insert( vertex_collapsing_into );
}
// Add every neighbor of `vertex_to_remove` to `vertex_collapsing_into`.
edges[ vertex_collapsing_into ].insert( neighbors.begin(), neighbors.end() );
// We have now added `vertex_collapsing_into` as a neighbor of itself. Remove it.
assert( edges[ vertex_collapsing_into ].count( vertex_collapsing_into ) );
edges[ vertex_collapsing_into ].erase( vertex_collapsing_into );
// Finally, erase `vertex_to_remove` from `edges`.
edges.erase( vertex_to_remove );
}
void rename_vertex( EdgeMap& edges, int old_vertex_name, int new_vertex_name )
{
// We must already know about old_vertex_name.
assert( edges.count( old_vertex_name ) );
// We must not already know about new_vertex_name.
assert( !edges.count( new_vertex_name ) );
// For every neighbor of `old_vertex_name`, replace it with `new_vertex_name`.
const std::unordered_set< int > neighbors( edges[ old_vertex_name ] );
for( const auto& n : neighbors ) {
edges[ n ].erase( old_vertex_name );
edges[ n ].insert( new_vertex_name );
}
// Move the neighbors of `old_vertex_name` to `new_vertex_name`.
edges[ new_vertex_name ] = neighbors;
edges.erase( old_vertex_name );
}
void insert_edge( EdgeMap& edges, int v1, int v2 )
{
assert( !contains_edge( edges, v1, v2 ) );
edges[ v1 ].insert( v2 );
edges[ v2 ].insert( v1 );
}