-
Notifications
You must be signed in to change notification settings - Fork 33
/
Demo_MCWNNM_ADMM2.m
92 lines (85 loc) · 3.98 KB
/
Demo_MCWNNM_ADMM2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
%-------------------------------------------------------------------------------------------------------------
% This is an implementation of the MCWNNM algorithm for real color image denoising.
% Author: Jun Xu, csjunxu@comp.polyu.edu.hk
% The Hong Kong Polytechnic University
%
% Please refer to the following paper if you use this code:
%
% @article{MCWNNM,
% author = {Jun Xu and Lei Zhang and David Zhang and Xiangchu Feng},
% title = {Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising},
% journal = {ICCV},
% year = {2017}
% }
%
% Please see the file License.txt for the license governing this code.
%-------------------------------------------------------------------------------------------------------------
clear;
Original_image_dir = 'kodak_color/';
fpath = fullfile(Original_image_dir, '*.png');
im_dir = dir(fpath);
im_num = length(im_dir);
nSig = [5 30 15];
Par.nSig = nSig; % Variance of the noise image
Par.win = 20; % Non-local patch searching window
Par.Constant = 2 * sqrt(2); % Constant num for the weight vector
Par.Innerloop = 2; % InnerLoop Num of between re-blockmatching
Par.ps = 6; % Patch size
Par.step = 5;
Par.Iter = 6; % total iter numbers
Par.display = true;
% Par.method = 'WNNM_ADMM'
Par.method = 'MCWNNM_ADMM'
Par.maxIter = 10;
Par.model = '2';
Par.delta = 0.1; % Parameter between each iter
Par.lambda = 0.75;
Par.mu = 1.001;
Par.rho = 0.05;
% record all the results in each iteration
Par.PSNR = zeros(Par.Iter, im_num, 'single');
Par.SSIM = zeros(Par.Iter, im_num, 'single');
for i = 1:im_num
Par.image = i;
Par.nSig0 = nSig;
Par.nlsp = 70; % Initial Non-local Patch number
Par.I = double( imread(fullfile(Original_image_dir, im_dir(i).name)) );
S = regexp(im_dir(i).name, '\.', 'split');
[h, w, ch] = size(Par.I);
Par.nim = zeros(size(Par.I));
for c = 1:ch
randn('seed',0);
Par.nim(:, :, c) = Par.I(:, :, c) + Par.nSig0(c) * randn(size(Par.I(:, :, c)));
end
fprintf('%s :\n',im_dir(i).name);
PSNR = csnr( Par.nim, Par.I, 0, 0 );
SSIM = cal_ssim( Par.nim, Par.I, 0, 0 );
fprintf('The initial value of PSNR = %2.4f, SSIM = %2.4f \n', PSNR,SSIM);
%
time0 = clock;
if Par.model == '1'
[im_out, Par] = MCWNNM_ADMM1_Denoising( Par.nim, Par.I, Par );
elseif Par.model == '2'
[im_out, Par] = MCWNNM_ADMM2_Denoising( Par.nim, Par.I, Par );
else
[im_out, Par] = MCWNNM_ADMM_Denoising( Par.nim, Par.I, Par );
end
fprintf('Total elapsed time = %f s\n', (etime(clock,time0)) );
im_out(im_out>255)=255;
im_out(im_out<0)=0;
% calculate the PSNR
Par.PSNR(Par.Iter, Par.image) = csnr( im_out, Par.I, 0, 0 );
Par.SSIM(Par.Iter, Par.image) = cal_ssim( im_out, Par.I, 0, 0 );
imname = sprintf([Par.method '_nSig' num2str(nSig(1)) num2str(nSig(2)) num2str(nSig(3)) '_' Par.model '_Oite' num2str(Par.Iter) '_Iite' num2str(Par.maxIter) '_rho' num2str(Par.rho) '_mu' num2str(Par.mu) '_lambda' num2str(Par.lambda) '_' im_dir(i).name]);
imwrite(im_out/255, imname);
fprintf('%s : PSNR = %2.4f, SSIM = %2.4f \n',im_dir(i).name, Par.PSNR(Par.Iter, Par.image),Par.SSIM(Par.Iter, Par.image) );
end
mPSNR=mean(Par.PSNR,2);
[~, idx] = max(mPSNR);
PSNR =Par.PSNR(idx,:);
SSIM = Par.SSIM(idx,:);
mSSIM=mean(SSIM,2);
fprintf('The best PSNR result is at %d iteration. \n',idx);
fprintf('The average PSNR = %2.4f, SSIM = %2.4f. \n', mPSNR(idx),mSSIM);
name = sprintf([Par.method '_' Par.model '_nSig' num2str(nSig(1)) num2str(nSig(2)) num2str(nSig(3)) '_' Par.model '_Oite' num2str(Par.Iter) '_Iite' num2str(Par.maxIter) '_rho' num2str(Par.rho) '_mu' num2str(Par.mu) '_lambda' num2str(Par.lambda) '.mat']);
save(name,'nSig','PSNR','SSIM','mPSNR','mSSIM');