-
Notifications
You must be signed in to change notification settings - Fork 1
/
CCLF_sac.py
546 lines (443 loc) · 19.1 KB
/
CCLF_sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import math
import utils
from encoder import make_encoder
LOG_FREQ = 10000
def gaussian_logprob(noise, log_std):
"""Compute Gaussian log probability."""
residual = (-0.5 * noise.pow(2) - log_std).sum(-1, keepdim=True)
return residual - 0.5 * np.log(2 * np.pi) * noise.size(-1)
def squash(mu, pi, log_pi):
"""Apply squashing function.
See appendix C from https://arxiv.org/pdf/1812.05905.pdf.
"""
mu = torch.tanh(mu)
if pi is not None:
pi = torch.tanh(pi)
if log_pi is not None:
log_pi -= torch.log(F.relu(1 - pi.pow(2)) + 1e-6).sum(-1, keepdim=True)
return mu, pi, log_pi
def weight_init(m):
"""Custom weight init for Conv2D and Linear layers."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
# delta-orthogonal init from https://arxiv.org/pdf/1806.05393.pdf
assert m.weight.size(2) == m.weight.size(3)
m.weight.data.fill_(0.0)
m.bias.data.fill_(0.0)
mid = m.weight.size(2) // 2
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain)
def weighted_mse_loss(input, target, weight=1):
return (weight * (input - target) ** 2).mean()
class Actor(nn.Module):
"""MLP actor network."""
def __init__(
self, obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, log_std_min, log_std_max, num_layers, num_filters
):
super().__init__()
self.encoder = make_encoder(
encoder_type, obs_shape, encoder_feature_dim, num_layers,
num_filters, output_logits=True
)
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.trunk = nn.Sequential(
nn.Linear(self.encoder.feature_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 2 * action_shape[0])
)
self.outputs = dict()
self.apply(weight_init)
def forward(
self, obs, compute_pi=True, compute_log_pi=True, detach_encoder=False
):
obs = self.encoder(obs, detach=detach_encoder)
mu, log_std = self.trunk(obs).chunk(2, dim=-1)
# constrain log_std inside [log_std_min, log_std_max]
log_std = torch.tanh(log_std)
log_std = self.log_std_min + 0.5 * (
self.log_std_max - self.log_std_min
) * (log_std + 1)
self.outputs['mu'] = mu
self.outputs['std'] = log_std.exp()
if compute_pi:
std = log_std.exp()
noise = torch.randn_like(mu)
pi = mu + noise * std
else:
pi = None
entropy = None
if compute_log_pi:
log_pi = gaussian_logprob(noise, log_std)
else:
log_pi = None
mu, pi, log_pi = squash(mu, pi, log_pi)
return mu, pi, log_pi, log_std
def log(self, L, step, log_freq=LOG_FREQ):
if step % log_freq != 0:
return
for k, v in self.outputs.items():
L.log_histogram('train_actor/%s_hist' % k, v, step)
L.log_param('train_actor/fc1', self.trunk[0], step)
L.log_param('train_actor/fc2', self.trunk[2], step)
L.log_param('train_actor/fc3', self.trunk[4], step)
class QFunction(nn.Module):
"""MLP for q-function."""
def __init__(self, obs_dim, action_dim, hidden_dim):
super().__init__()
self.trunk = nn.Sequential(
nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, obs, action):
assert obs.size(0) == action.size(0)
obs_action = torch.cat([obs, action], dim=1)
return self.trunk(obs_action)
class Critic(nn.Module):
"""Critic network, employes two q-functions."""
def __init__(
self, obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, num_layers, num_filters
):
super().__init__()
self.encoder = make_encoder(
encoder_type, obs_shape, encoder_feature_dim, num_layers,
num_filters, output_logits=True
)
self.Q1 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.Q2 = QFunction(
self.encoder.feature_dim, action_shape[0], hidden_dim
)
self.outputs = dict()
self.apply(weight_init)
def forward(self, obs, action, detach_encoder=False):
# detach_encoder allows to stop gradient propogation to encoder
obs = self.encoder(obs, detach=detach_encoder)
q1 = self.Q1(obs, action)
q2 = self.Q2(obs, action)
self.outputs['q1'] = q1
self.outputs['q2'] = q2
return q1, q2
def log(self, L, step, log_freq=LOG_FREQ):
if step % log_freq != 0:
return
self.encoder.log(L, step, log_freq)
for k, v in self.outputs.items():
L.log_histogram('train_critic/%s_hist' % k, v, step)
for i in range(3):
L.log_param('train_critic/q1_fc%d' % i, self.Q1.trunk[i * 2], step)
L.log_param('train_critic/q2_fc%d' % i, self.Q2.trunk[i * 2], step)
class CURL(nn.Module):
"""
CURL
"""
def __init__(self, obs_shape, z_dim, batch_size, critic, critic_target, output_type="continuous"):
super(CURL, self).__init__()
self.batch_size = batch_size
self.encoder = critic.encoder
self.encoder_target = critic_target.encoder
self.W = nn.Parameter(torch.rand(z_dim, z_dim))
self.output_type = output_type
def encode(self, x, detach=False, ema=False):
"""
Encoder: z_t = e(x_t)
:param x: x_t, x y coordinates
:return: z_t, value in r2
"""
if ema:
with torch.no_grad():
z_out = self.encoder_target(x)
else:
z_out = self.encoder(x)
if detach:
z_out = z_out.detach()
return z_out
def compute_logits(self, z_a, z_pos):
"""
Uses logits trick for CURL:
- compute (B,B) matrix z_a (W z_pos.T)
- positives are all diagonal elements
- negatives are all other elements
- to compute loss use multiclass cross entropy with identity matrix for labels
"""
Wz = torch.matmul(self.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
return logits
class CCLFSacAgent(object):
"""A contrastive-curiosity-driven learning framework on SAC"""
def __init__(
self,
obs_shape,
action_shape,
device,
hidden_dim=256,
discount=0.99,
init_temperature=0.01,
alpha_lr=1e-3,
alpha_beta=0.9,
actor_lr=1e-3,
actor_beta=0.9,
actor_log_std_min=-10,
actor_log_std_max=2,
actor_update_freq=2,
critic_lr=1e-3,
critic_beta=0.9,
critic_tau=0.005,
critic_target_update_freq=2,
encoder_type='pixel',
encoder_feature_dim=50,
encoder_lr=1e-3,
encoder_tau=0.005,
num_layers=4,
num_filters=32,
cpc_update_freq=1,
log_interval=100,
detach_encoder=False,
curl_latent_dim=128,
K_num = 2,
M_num = 2,
batch_size = 32,
pre_transform_image_size = 100,
action_repeat = 2
):
self.device = device
self.discount = discount
self.critic_tau = critic_tau
self.encoder_tau = encoder_tau
self.actor_update_freq = actor_update_freq
self.critic_target_update_freq = critic_target_update_freq
self.cpc_update_freq = cpc_update_freq
self.log_interval = log_interval
self.image_size = obs_shape[-1]
self.curl_latent_dim = curl_latent_dim
self.detach_encoder = detach_encoder
self.encoder_type = encoder_type
self.K_num = K_num
self.M_num = M_num
self.batch_size = batch_size
self.pre_transform_image_size = pre_transform_image_size
self.reward_ex_max=0.00001
self.reward_in_max=0.00001
self.action_repeat=action_repeat
self.actor = Actor(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, actor_log_std_min, actor_log_std_max,
num_layers, num_filters
).to(device)
self.critic = Critic(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, num_layers, num_filters
).to(device)
self.critic_target = Critic(
obs_shape, action_shape, hidden_dim, encoder_type,
encoder_feature_dim, num_layers, num_filters
).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
# tie encoders between actor and critic, and CURL and critic
self.actor.encoder.copy_conv_weights_from(self.critic.encoder)
self.log_alpha = torch.tensor(np.log(init_temperature)).to(device)
self.log_alpha.requires_grad = True
# set target entropy to -|A|
self.target_entropy = -np.prod(action_shape)
# optimizers
self.actor_optimizer = torch.optim.Adam(
self.actor.parameters(), lr=actor_lr, betas=(actor_beta, 0.999)
)
self.critic_optimizer = torch.optim.Adam(
self.critic.parameters(), lr=critic_lr, betas=(critic_beta, 0.999)
)
self.log_alpha_optimizer = torch.optim.Adam(
[self.log_alpha], lr=alpha_lr, betas=(alpha_beta, 0.999)
)
if self.encoder_type == 'pixel':
# create CURL encoder (the 128 batch size is probably unnecessary)
self.CURL = CURL(obs_shape, encoder_feature_dim,
self.curl_latent_dim, self.critic,self.critic_target, output_type='continuous').to(self.device)
# optimizer for critic encoder for reconstruction loss
self.encoder_optimizer = torch.optim.Adam(
self.critic.encoder.parameters(), lr=encoder_lr
)
self.cpc_optimizer = torch.optim.Adam(
self.CURL.parameters(), lr=encoder_lr
)
self.cross_entropy_loss = nn.CrossEntropyLoss()
self.train()
self.critic_target.train()
def train(self, training=True):
self.training = training
self.actor.train(training)
self.critic.train(training)
if self.encoder_type == 'pixel':
self.CURL.train(training)
@property
def alpha(self):
return self.log_alpha.exp()
def select_action(self, obs):
with torch.no_grad():
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
mu, _, _, _ = self.actor(
obs, compute_pi=False, compute_log_pi=False
)
return mu.cpu().data.numpy().flatten()
def sample_action(self, obs):
if obs.shape[-1] != self.image_size:
obs = utils.center_crop_image(obs, self.image_size)
with torch.no_grad():
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
mu, pi, _, _ = self.actor(obs, compute_log_pi=False)
return pi.cpu().data.numpy().flatten()
def sample_selection(self, obs, next_obs):
#select the two most informative inputs based on contrastive curiosity
obs_train = []
next_obs_train = []
with torch.no_grad():
loss = []
z_a = self.CURL.encoder(next_obs[0])
for i in range(1, self.K_num):
z_pos = self.critic_target.encoder(next_obs[i])
Wz = torch.matmul(self.CURL.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
loss.append(torch.diagonal(nn.Softmax(dim=1)(logits), 0))
next_obs_weights, next_obs_index = torch.min(torch.stack(loss).T, dim=1)
next_obs_train.append(next_obs[0])
next_obs_train.append(torch.stack([next_obs[next_obs_index[i]+1][i] for i in range(self.batch_size)]))
loss = []
z_a = self.CURL.encoder(obs[0])
for i in range(1, self.M_num):
z_pos = self.critic_target.encoder(obs[i])
Wz = torch.matmul(self.CURL.W, z_pos.T) # (z_dim,B)
logits = torch.matmul(z_a, Wz) # (B,B)
logits = logits - torch.max(logits, 1)[0][:, None]
loss.append(torch.diagonal(nn.Softmax(dim=1)(logits), 0))
obs_weights, obs_index = torch.min(torch.stack(loss).T, dim=1)
obs_train.append(obs[0])
obs_train.append(torch.stack([obs[obs_index[i]+1][i] for i in range(self.batch_size)]))
return obs_train, next_obs_train, obs_weights.view(-1, 1).detach(), next_obs_weights.view(-1, 1).detach()
def update_critic(self, obs_train, action, reward, next_obs_train, not_done, L, step, obs_weights, next_obs_weights):
#regularize Q-learning based on contrastive curiosity
DRQ_num = 2
target_Q_list = [None] * DRQ_num
with torch.no_grad():
for i in range(DRQ_num):
_, policy_action, log_pi, _ = self.actor(next_obs_train[i])
target_Q1, target_Q2 = self.critic_target(next_obs_train[i], policy_action)
target_V = torch.min(target_Q1, target_Q2) - self.alpha.detach() * log_pi
target_Q_list[i] = reward + (not_done * self.discount * target_V)
#compute intrinsic reward
intrinsic = 0.2*math.exp(-2e-5*step*self.action_repeat)*(1-(obs_weights + next_obs_weights)/2)*self.reward_ex_max/self.reward_in_max
self.reward_in_max = max(max(intrinsic), self.reward_in_max)
self.reward_ex_max = max(max(reward), self.reward_ex_max)
target_Q = target_Q_list[0] * next_obs_weights + target_Q_list[1] * (1-next_obs_weights) + intrinsic
critic_loss = 0
for i in range(DRQ_num):
Q1, Q2 = self.critic(obs_train[i], action, detach_encoder=self.detach_encoder)
critic_loss += weighted_mse_loss(Q1, target_Q, (1-i) * obs_weights + i * (1-obs_weights)) + weighted_mse_loss(Q2, target_Q, (1-i) * obs_weights + i * (1-obs_weights))
if step % self.log_interval == 0:
L.log('train_critic/loss', critic_loss, step)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
self.critic.log(L, step)
def update_actor_and_alpha(self, obs, L, step):
# detach encoder, so we don't update it with the actor loss
_, pi, log_pi, log_std = self.actor(obs, detach_encoder=True)
actor_Q1, actor_Q2 = self.critic(obs, pi, detach_encoder=True)
actor_Q = torch.min(actor_Q1, actor_Q2)
actor_loss = (self.alpha.detach() * log_pi - actor_Q).mean()
if step % self.log_interval == 0:
L.log('train_actor/loss', actor_loss, step)
L.log('train_actor/target_entropy', self.target_entropy, step)
entropy = 0.5 * log_std.shape[1] * \
(1.0 + np.log(2 * np.pi)) + log_std.sum(dim=-1)
if step % self.log_interval == 0:
L.log('train_actor/entropy', entropy.mean(), step)
# optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
self.actor.log(L, step)
self.log_alpha_optimizer.zero_grad()
alpha_loss = (self.alpha *
(-log_pi - self.target_entropy).detach()).mean()
if step % self.log_interval == 0:
L.log('train_alpha/loss', alpha_loss, step)
L.log('train_alpha/value', self.alpha, step)
alpha_loss.backward()
self.log_alpha_optimizer.step()
def update_cpc(self, obs_anchor, obs_pos, L, step, obs_weights):
#regularize representation learning
z_a = self.CURL.encode(obs_anchor)
z_pos = self.CURL.encode(obs_pos, ema=True)
logits = self.CURL.compute_logits(z_a, z_pos)
labels = torch.arange(logits.shape[0]).long().to(self.device)
self.cross_entropy_loss = nn.CrossEntropyLoss(weight=1-obs_weights) #based on contrastive learning
loss = self.cross_entropy_loss(logits, labels)
self.encoder_optimizer.zero_grad()
self.cpc_optimizer.zero_grad()
loss.backward()
self.encoder_optimizer.step()
self.cpc_optimizer.step()
if step % self.log_interval == 0:
L.log('train/curl_loss', loss, step)
def update(self, replay_buffer, L, step):
if self.encoder_type == 'pixel':
obs, action, reward, next_obs, not_done = replay_buffer.sample_cpc(max(self.K_num, self.M_num))
else:
obs, action, reward, next_obs, not_done = replay_buffer.sample_proprio()
if step % self.log_interval == 0:
L.log('train/batch_reward', reward.mean(), step)
obs_train, next_obs_train, obs_weights, next_obs_weights = self.sample_selection(obs, next_obs)
del obs, next_obs
replay_buffer.update_weight(((obs_weights+next_obs_weights)/2).detach().cpu().numpy()) # update prioritization weights
self.update_critic(obs_train, action, reward, next_obs_train, not_done, L, step, obs_weights, next_obs_weights)
if step % self.actor_update_freq == 0:
self.update_actor_and_alpha(obs_train[0], L, step)
if step % self.critic_target_update_freq == 0:
utils.soft_update_params(
self.critic.Q1, self.critic_target.Q1, self.critic_tau
)
utils.soft_update_params(
self.critic.Q2, self.critic_target.Q2, self.critic_tau
)
utils.soft_update_params(
self.critic.encoder, self.critic_target.encoder,
self.encoder_tau
)
if step % self.cpc_update_freq == 0 and self.encoder_type == 'pixel':
# obs_anchor, obs_pos = cpc_kwargs["obs_anchor"], cpc_kwargs["obs_pos"]
self.update_cpc(obs_train[0], obs_train[1], L, step, obs_weights)
del obs_train, next_obs_train, obs_weights, next_obs_weights, action, reward, not_done
def save(self, model_dir, step):
torch.save(
self.actor.state_dict(), '%s/actor_%s.pt' % (model_dir, step)
)
torch.save(
self.critic.state_dict(), '%s/critic_%s.pt' % (model_dir, step)
)
def save_curl(self, model_dir, step):
torch.save(
self.CURL.state_dict(), '%s/curl_%s.pt' % (model_dir, step)
)
def load(self, model_dir, step):
self.actor.load_state_dict(
torch.load('%s/actor_%s.pt' % (model_dir, step))
)
self.critic.load_state_dict(
torch.load('%s/critic_%s.pt' % (model_dir, step))
)