Training configs are explained in lib/core/config.py. Different configs for different datasets and estimators are in config folder.
Dataset | Pose Estimator | 3D Pose | 2D Pose | SMPL |
---|---|---|---|---|
Sub-JHMDB | SimplePose | config | ||
3DPW | EFT | config | config | |
3DPW | PARE | config | config | |
3DPW | SPIN | config | config | |
Human3.6M | FCN | config | ||
AIST++ | SPIN | config | config |
You can directly train the model in different datasets and estimator settings using following commands
Sub-JHMDB Simplepose
python train.py --cfg configs/config_jhmdb_simplepose_2D.yaml --dataset_name jhmdb --estimator simplepose --body_representation 2D --sample_interval 10
3DPW SPIN
python train.py --cfg configs/config_pw3d_spin_3D.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10
3DPW EFT
python train.py --cfg configs/config_pw3d_eft_3D.yaml --dataset_name pw3d --estimator eft --body_representation 3D --sample_interval 10
3DPW PARE
python train.py --cfg configs/config_pw3d_pare_3D.yaml --dataset_name pw3d --estimator pare --body_representation 3D --sample_interval 10
AIST++ SPIN
python train.py --cfg configs/config_aist_spin_3D.yaml --dataset_name aist --estimator spin --body_representation 3D --sample_interval 10
Human3.6M FCN
python train.py --cfg configs/config_h36m_fcn_3D.yaml --dataset_name h36m --estimator fcn --body_representation 3D --sample_interval 10
3DPW SPIN
python train.py --cfg configs/config_pw3d_spin_smpl.yaml --dataset_name pw3d --estimator spin --body_representation smpl --sample_interval 10
3DPW EFT
python train.py --cfg configs/config_pw3d_eft_smpl.yaml --dataset_name pw3d --estimator eft --body_representation smpl --sample_interval 10
3DPW PARE
python train.py --cfg configs/config_pw3d_pare_smpl.yaml --dataset_name pw3d --estimator pare --body_representation smpl --sample_interval 10
AIST++ SPIN
python train.py --cfg configs/config_aist_spin_smpl.yaml --dataset_name aist --estimator spin --body_representation smpl --sample_interval 10
-
Set
cfg.TRAIN.RESUME = [checkpoint path]
, then you can resume training -
Set
cfg.EXP_NAME = [your experiment name]
, then all the results would save in folder[time]_[your experiment name]