-
Notifications
You must be signed in to change notification settings - Fork 25
/
main.cpp
248 lines (212 loc) · 8.06 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#include <math.h>
#include <uWS/uWS.h>
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>
#include "Eigen-3.3/Eigen/Core"
#include "Eigen-3.3/Eigen/QR"
#include "MPC.h"
#include "json.hpp"
// for convenience
using json = nlohmann::json;
// For converting back and forth between radians and degrees.
constexpr double pi() { return M_PI; }
double deg2rad(double x) { return x * pi() / 180; }
double rad2deg(double x) { return x * 180 / pi(); }
// Checks if the SocketIO event has JSON data.
// If there is data the JSON object in string format will be returned,
// else the empty string "" will be returned.
string hasData(string s) {
auto found_null = s.find("null");
auto b1 = s.find_first_of("[");
auto b2 = s.rfind("}]");
if (found_null != string::npos) {
return "";
} else if (b1 != string::npos && b2 != string::npos) {
return s.substr(b1, b2 - b1 + 2);
}
return "";
}
// Evaluate a polynomial.
double polyeval(Eigen::VectorXd coeffs, double x) {
double result = 0.0;
for (int i = 0; i < coeffs.size(); i++) {
result += coeffs[i] * pow(x, i);
}
return result;
}
// Fit a polynomial.
// Adapted from
// https://github.com/JuliaMath/Polynomials.jl/blob/master/src/Polynomials.jl#L676-L716
Eigen::VectorXd polyfit(Eigen::VectorXd xvals, Eigen::VectorXd yvals,
int order) {
assert(xvals.size() == yvals.size());
assert(order >= 1 && order <= xvals.size() - 1);
Eigen::MatrixXd A(xvals.size(), order + 1);
for (int i = 0; i < xvals.size(); i++) {
A(i, 0) = 1.0;
}
for (int j = 0; j < xvals.size(); j++) {
for (int i = 0; i < order; i++) {
A(j, i + 1) = A(j, i) * xvals(j);
}
}
auto Q = A.householderQr();
auto result = Q.solve(yvals);
return result;
}
int main() {
uWS::Hub h;
// MPC is initialized here!
MPC mpc;
h.onMessage([&mpc](uWS::WebSocket<uWS::SERVER> ws, char *data, size_t length,
uWS::OpCode opCode) {
// "42" at the start of the message means there's a websocket message event.
// The 4 signifies a websocket message
// The 2 signifies a websocket event
string sdata = string(data).substr(0, length);
cout << sdata << endl;
if (sdata.size() > 2 && sdata[0] == '4' && sdata[1] == '2') {
string s = hasData(sdata);
if (s != "") {
auto j = json::parse(s);
string event = j[0].get<string>();
if (event == "telemetry") {
// j[1] is the data JSON object
vector<double> ptsx = j[1]["ptsx"];
vector<double> ptsy = j[1]["ptsy"];
double px = j[1]["x"];
double py = j[1]["y"];
double psi = j[1]["psi"];
double v = j[1]["speed"];
double delta= j[1]["steering_angle"];
double a = j[1]["throttle"];
/*
* TODO: Calculate steering angle and throttle using MPC.
*
* Both are in between [-1, 1].
*
*/
// Preprocessing.
// Transforms waypoints coordinates to the cars coordinates.
size_t n_waypoints = ptsx.size();
auto ptsx_transformed = Eigen::VectorXd(n_waypoints);
auto ptsy_transformed = Eigen::VectorXd(n_waypoints);
for (unsigned int i = 0; i < n_waypoints; i++ ) {
double dX = ptsx[i] - px;
double dY = ptsy[i] - py;
double minus_psi = 0.0 - psi;
ptsx_transformed( i ) = dX * cos( minus_psi ) - dY * sin( minus_psi );
ptsy_transformed( i ) = dX * sin( minus_psi ) + dY * cos( minus_psi );
}
// Fit polynomial to the points - 3rd order.
auto coeffs = polyfit(ptsx_transformed, ptsy_transformed, 3);
// Actuator delay in milliseconds.
const int actuatorDelay = 100;
// Actuator delay in seconds.
const double delay = actuatorDelay / 1000.0;
// Initial state.
const double x0 = 0;
const double y0 = 0;
const double psi0 = 0;
const double cte0 = coeffs[0];
const double epsi0 = -atan(coeffs[1]);
// State after delay.
double x_delay = x0 + ( v * cos(psi0) * delay );
double y_delay = y0 + ( v * sin(psi0) * delay );
double psi_delay = psi0 - ( v * delta * delay / mpc.Lf );
double v_delay = v + a * delay;
double cte_delay = cte0 + ( v * sin(epsi0) * delay );
double epsi_delay = epsi0 - ( v * atan(coeffs[1]) * delay / mpc.Lf );
// Define the state vector.
Eigen::VectorXd state(6);
state << x_delay, y_delay, psi_delay, v_delay, cte_delay, epsi_delay;
// Find the MPC solution.
auto vars = mpc.Solve(state, coeffs);
double steer_value = vars[0]/deg2rad(25);
double throttle_value = vars[1];
json msgJson;
// NOTE: Remember to divide by deg2rad(25) before you send the steering value back.
// Otherwise the values will be in between [-deg2rad(25), deg2rad(25] instead of [-1, 1].
msgJson["steering_angle"] = steer_value;
msgJson["throttle"] = throttle_value;
//Display the MPC predicted trajectory
vector<double> mpc_x_vals;
vector<double> mpc_y_vals;
for ( int i = 2; i < vars.size(); i++ ) {
if ( i % 2 == 0 ) {
mpc_x_vals.push_back( vars[i] );
} else {
mpc_y_vals.push_back( vars[i] );
}
}
//.. add (x,y) points to list here, points are in reference to the vehicle's coordinate system
// the points in the simulator are connected by a Green line
msgJson["mpc_x"] = mpc_x_vals;
msgJson["mpc_y"] = mpc_y_vals;
//Display the waypoints/reference line
vector<double> next_x_vals;
vector<double> next_y_vals;
double poly_inc = 2.5;
int num_points = 25;
for ( int i = 0; i < num_points; i++ ) {
double x = poly_inc * i;
next_x_vals.push_back( x );
next_y_vals.push_back( polyeval(coeffs, x) );
}
//.. add (x,y) points to list here, points are in reference to the vehicle's coordinate system
// the points in the simulator are connected by a Yellow line
msgJson["next_x"] = next_x_vals;
msgJson["next_y"] = next_y_vals;
auto msg = "42[\"steer\"," + msgJson.dump() + "]";
// std::cout << msg << std::endl;
// Latency
// The purpose is to mimic real driving conditions where
// the car does actuate the commands instantly.
//
// Feel free to play around with this value but should be to drive
// around the track with 100ms latency.
//
// NOTE: REMEMBER TO SET THIS TO 100 MILLISECONDS BEFORE
// SUBMITTING.
this_thread::sleep_for(chrono::milliseconds(actuatorDelay));
ws.send(msg.data(), msg.length(), uWS::OpCode::TEXT);
}
} else {
// Manual driving
std::string msg = "42[\"manual\",{}]";
ws.send(msg.data(), msg.length(), uWS::OpCode::TEXT);
}
}
});
// We don't need this since we're not using HTTP but if it's removed the
// program
// doesn't compile :-(
h.onHttpRequest([](uWS::HttpResponse *res, uWS::HttpRequest req, char *data,
size_t, size_t) {
const std::string s = "<h1>Hello world!</h1>";
if (req.getUrl().valueLength == 1) {
res->end(s.data(), s.length());
} else {
// i guess this should be done more gracefully?
res->end(nullptr, 0);
}
});
h.onConnection([&h](uWS::WebSocket<uWS::SERVER> ws, uWS::HttpRequest req) {
std::cout << "Connected!!!" << std::endl;
});
h.onDisconnection([&h](uWS::WebSocket<uWS::SERVER> ws, int code,
char *message, size_t length) {
ws.close();
std::cout << "Disconnected" << std::endl;
});
int port = 4567;
if (h.listen(port)) {
std::cout << "Listening to port " << port << std::endl;
} else {
std::cerr << "Failed to listen to port" << std::endl;
return -1;
}
h.run();
}