forked from ivendrov/order-embedding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_cnn_features.py
117 lines (77 loc) · 3.13 KB
/
extract_cnn_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import caffe
import json
import numpy
from collections import defaultdict
import sklearn.preprocessing
from PIL import ImageFile
import os
import paths
ImageFile.LOAD_TRUNCATED_IMAGES = True # needed for coco train
def process_dataset(dataset, net, gpu_id):
data_dir = paths.dataset_dir[dataset] + '/'
images_dir = paths.images_dir[dataset]
data = json.load(open(data_dir + 'dataset_%s.json' % dataset, 'r'))
splits = defaultdict(list)
for im in data['images']:
split = im['split']
if split == 'restval':
split = 'train'
splits[split].append(images_dir[dataset] + im['filepath'] + '/' + im['filename'])
for name, filenames in splits.items():
run(dataset + '_' + name, filenames, net, gpu_id, data_dir + 'images/')
def run(split_name, filenames, net, gpu_id, output_dir):
""" Extracts CNN features
:param split_name: name of the split to use
:param filenames: list of filenames for images
:param net: name of the CNN to extract features with
:param output_dir: the directory to store the features in
:param gpu_id: gpu ID to use to run computation
"""
net_data = paths.cnns[net]
layer = net_data['features_layer']
# load caffe net
caffe.set_mode_gpu()
caffe.set_device(gpu_id)
net = caffe.Net(net_data['prototxt'], net_data['caffemodel'], caffe.TEST)
batchsize, num_channels, width, height = net.blobs['data'].data.shape
# set up pre-processor
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_mean('data', net_data['mean'])
transformer.set_raw_scale('data', 255)
feat_shape = [len(filenames)] + list(net.blobs[layer].data.shape[1:])
print("Shape of features to be computed: " + str(feat_shape))
feats = {}
for key in ['1crop', '10crop']:
feats[key] = numpy.zeros(feat_shape).astype('float32')
for k in range(len(filenames)):
print('Image %i/%i' % (k, len(filenames)))
im = caffe.io.load_image(filenames[k])
h, w, _ = im.shape
if h < w:
im = caffe.io.resize_image(im, (256, 256*w/h))
else:
im = caffe.io.resize_image(im, (256*h/w, 256))
crops = caffe.io.oversample([im], (width, height))
for i, crop in enumerate(crops):
net.blobs['data'].data[i] = transformer.preprocess('data', crop)
n = len(crops)
net.forward()
output = net.blobs[layer].data[:n]
for key, f in feats.items():
output = numpy.maximum(output, 0)
if key == '10crop':
f[k] = output.mean(axis=0) # mean over 10 crops
else:
f[k] = output[4] # just center crop
print("Saving features...")
for methodname, f in feats.items():
f = sklearn.preprocessing.normalize(f)
print(methodname)
method_dir = output_dir + methodname
try:
os.mkdir(method_dir)
except OSError:
pass
numpy.save(method_dir + '/%s.npy' % split_name, f)