-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathprepare_data.py
66 lines (52 loc) · 2.73 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import person_detector
import tensorflow as tf
command = """
python retrain.py --bottleneck_dir=tf/training_data/bottlenecks --model_dir=tf/training_data/inception --summaries_dir=tf/training_data/summaries/basic --output_graph=tf/training_output/retrained_graph.pb --output_labels=tf/training_output/retrained_labels.txt --image_dir=./images/classified --how_many_training_steps=50000 --testing_percentage=20 --learning_rate=0.001
"""
IMAGE_FOLDER = "images/unclassified"
POS_FOLDER = "images/classified/positive"
NEG_FOLDER = "images/classified/negative"
LOVOO_FOLDER = "images/lovoo"
paths = [IMAGE_FOLDER, 'images/classified', POS_FOLDER, NEG_FOLDER, LOVOO_FOLDER]
for p in paths:
if not os.path.isdir(p):
os.mkdir(p)
if __name__ == "__main__":
detection_graph = person_detector.open_graph()
images = [f for f in os.listdir(IMAGE_FOLDER) if os.path.isfile(os.path.join(IMAGE_FOLDER, f))]
positive_images = filter(lambda image: (image.startswith("1_")), images)
negative_images = filter(lambda image: (image.startswith("0_")), images)
lovoo_images = [f for f in os.listdir(LOVOO_FOLDER) if os.path.isfile(os.path.join(LOVOO_FOLDER, f))]
with detection_graph.as_default():
with tf.Session() as sess:
for pos in lovoo_images:
old_filename = LOVOO_FOLDER + "/" + pos
new_filename = POS_FOLDER + "/" + pos[:-5] + ".jpg"
if not os.path.isfile(new_filename):
print(">> Moving positive image: " + pos)
img = person_detector.get_person(old_filename, sess)
if not img:
continue
img = img.convert('L')
img.save(new_filename, "jpeg")
for pos in positive_images:
old_filename = IMAGE_FOLDER + "/" + pos
new_filename = POS_FOLDER + "/" + pos[:-5] + ".jpg"
if not os.path.isfile(new_filename):
print(">> Moving positive image: " + pos)
img = person_detector.get_person(old_filename, sess)
if not img:
continue
img = img.convert('L')
img.save(new_filename, "jpeg")
for neg in negative_images:
old_filename = IMAGE_FOLDER + "/" + neg
new_filename = NEG_FOLDER + "/" + neg[:-5] + ".jpg"
if not os.path.isfile(new_filename):
print(">> Moving negative image: " + neg)
img = person_detector.get_person(old_filename, sess)
if not img:
continue
img = img.convert('L')
img.save(new_filename, "jpeg")