-
Notifications
You must be signed in to change notification settings - Fork 9
/
train_deeplab.py
499 lines (370 loc) · 17.9 KB
/
train_deeplab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import argparse
import os
import sys
from datetime import datetime
from models.deeplabv3_bilinear import get_deeplab
import torch.distributed as dist
import torch.nn as nn
import torch
from torch.utils.data import DataLoader
# tensorboard
from torch.utils.tensorboard import SummaryWriter
from models.mvssnet import get_mvss
from datasets.dataset import *
def dice_loss(out, gt, smooth=1.0):
gt = gt.view(-1)
out = out.view(-1)
intersection = (gt * out).sum()
dice = (2.0 * intersection + smooth) / (torch.square(gt).sum() + torch.square(
out).sum() + smooth) # TODO: need to confirm this matches what the paper says, and also the calculation/result is correct
return 1.0 - dice
# for multiprocessing
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
# for removing damaged images
def collate_fn(batch):
batch = list(filter(lambda x: x is not None, batch))
return torch.utils.data.dataloader.default_collate(batch)
def parse_args():
parser = argparse.ArgumentParser()
## job
parser.add_argument("--id", type=int, help="unique ID from Slurm")
parser.add_argument("--run_name", type=str, default="Deeplabv3_plus", help="run name")
## multiprocessing
parser.add_argument('--dist_backend', default='nccl', choices=['gloo', 'nccl'], help='multiprocessing backend')
parser.add_argument('--master_addr', type=str, default="localhost", help='address')
parser.add_argument('--master_port', type=int, default=3721, help='address')
parser.add_argument('--local_rank', default=0, type=int, help='local rank')
## dataset
parser.add_argument("--paths_file", type=str, default="./files.txt",
help="path to the file with input paths") # each line of this file should contain "/path/to/image.ext /path/to/mask.ext /path/to/edge.ext 1 (for fake)/0 (for real)"; for real image.ext, set /path/to/mask.ext and /path/to/edge.ext as a string None
parser.add_argument("--val_paths_file", type=str, help="path to the validation set")
parser.add_argument("--n_c_samples", type=int, help="samples per classes (None for non-controlled)")
parser.add_argument("--val_n_c_samples", type=int,
help="samples per classes for validation set (None for non-controlled)")
parser.add_argument("--workers", type=int, default=0, help="number of cpu threads to use during batch generation")
parser.add_argument("--image_size", type=int, default=512, help="size of the images")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--batch_size", type=int, default=12,
help="size of the batches") # no default value given by paper
## model
parser.add_argument('--load_path', type=str, help='pretrained model or checkpoint for continued training')
## optimizer and scheduler
parser.add_argument("--optim", choices=['adam', 'sgd'], default='adam', help="optimizer")
parser.add_argument("--b1", type=float, default=0.9, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--momentum", type=float, default=0.9, help="sgd: momentum of gradient")
parser.add_argument('--patience', type=int, default=5,
help='numbers of epochs to decay for ReduceLROnPlateau scheduler (None to disable)')
parser.add_argument('--decay_epoch', type=int,
help='numbers of epochs to decay for StepLR scheduler (low priority, None to disable)')
## training
parser.add_argument("--lr", type=float, default=1e-1, help="adam: learning rate")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--cond_epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_early", type=int, default=10, help="number of epochs for early stopping")
## losses
parser.add_argument("--lambda_seg", type=float, default=0.8, help="pixel-scale loss weight (alpha)")
parser.add_argument("--lambda_clf", type=float, default=0.2, help="image-scale loss weight (beta)")
## log
parser.add_argument("--log_interval", type=int, default=100, help="interval between saving image samples")
parser.add_argument("--checkpoint_interval", type=int, default=1000,
help="batch interval between model checkpoints")
args = parser.parse_args()
return args
def init_env(args, local_rank, global_rank):
# # for debug only
# torch.autograd.set_detect_anomaly(True)
if (args.id is None):
args.id = datetime.now().strftime("%Y%m%d%H%M%S")
torch.cuda.set_device(local_rank)
setup_for_distributed(global_rank == 0)
# finalizing args, print here
print(args)
return args
def init_models(args):
model = get_deeplab()
return model
def init_dataset(args, global_rank, world_size, val=False):
# return None if no validation set provided
if (val and args.val_paths_file is None):
print('No val set!')
return None, None
dataset = DeepfakeDataset((args.paths_file if not val else args.val_paths_file),
args.image_size,
args.id,
(args.n_c_samples if not val else args.val_n_c_samples),
val)
sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=world_size, rank=global_rank,
shuffle=True)
local_batch_size = args.batch_size // world_size
if (not val):
print('Local batch size is {} ({}//{})!'.format(local_batch_size, args.batch_size, world_size))
dataloader = DataLoader(dataset=dataset, batch_size=local_batch_size, num_workers=args.workers, pin_memory=True,
drop_last=True, sampler=sampler, collate_fn=collate_fn)
print('{} set size is {}!'.format(('Train' if not val else 'Val'), len(dataloader) * args.batch_size))
return sampler, dataloader
def init_optims(args, world_size,
model):
# Optimizers
local_lr = args.lr / world_size
print('Local learning rate is {} ({}/{})!'.format(local_lr, args.lr, world_size))
if (args.optim == 'adam'):
print("Using optimizer adam")
optimizer = torch.optim.Adam(model.parameters(), lr=local_lr, betas=(args.b1, args.b2))
elif (args.optim == 'sgd'):
print("Using optimizer sgd")
optimizer = torch.optim.SGD(model.parameters(), lr=local_lr, momentum=args.momentum)
else:
print("Unrecognized optimizer %s" % args.optim)
sys.exit()
return optimizer
def init_schedulers(args, optimizer):
lr_scheduler = None
# high priority for ReduceLROnPlateau (validation set required)
if (args.val_paths_file and args.patience):
print("Using scheduler ReduceLROnPlateau")
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
factor=0.1,
patience=args.patience)
# low priority StepLR
elif (args.decay_epoch):
print("Using scheduler StepLR")
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer,
step_size=args.decay_epoch,
gamma=0.5)
else:
print("No scheduler used")
return lr_scheduler
def load_dicts(args, get_module,
model):
# Load pretrained models
if args.load_path != None and args.load_path != 'timm':
print('Load pretrained model: {}'.format(args.load_path))
if (not get_module):
model.load_state_dict(torch.load(args.load_path))
else:
model.module.load_state_dict(torch.load(args.load_path))
return model
# for saving checkpoints
def save_checkpoints(checkpoint_dir, id, epoch, step, get_module,
model):
if (get_module):
net = model.module
else:
net = model
torch.save(net.state_dict(),
os.path.join(checkpoint_dir, str(id) + "_" + str(epoch) + '_' + str(step) + '.pth'))
def denormalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
"""denormalize image with mean and std
"""
image = image.clone().detach().cpu()
image = image * torch.tensor(std).view(3, 1, 1)
image = image + torch.tensor(mean).view(3, 1, 1)
return image
# a single step of prediction and loss calculation (same for both training and validating)
def predict_loss(args, data, model,
criterion_BCE,
gmp):
# load data
in_imgs, in_masks, in_edges, in_labels = data
in_imgs = in_imgs.to('cuda', non_blocking=True)
in_masks = in_masks.to('cuda', non_blocking=True)
in_labels = in_labels.to('cuda', non_blocking=True).float()
# predict
out_masks = model(in_imgs)
out_masks = torch.sigmoid(out_masks)
out_labels = gmp(out_masks).squeeze()
# Pixel-scale loss
loss_seg = dice_loss(out_masks, in_masks)
# Image-scale loss (with GMP)
loss_clf = criterion_BCE(out_labels, in_labels)
# Total loss
alpha = args.lambda_seg
beta = args.lambda_clf
weighted_loss_seg = alpha * loss_seg
weighted_loss_clf = beta * loss_clf
loss = weighted_loss_seg + weighted_loss_clf
return loss, weighted_loss_seg, weighted_loss_clf, in_imgs, in_masks, out_masks
def train(args, global_rank, sync, get_module,
model,
train_sampler, dataloader, val_sampler, val_dataloader,
optimizer,
lr_scheduler):
# Losses that are built-in in PyTorch
criterion_BCE = nn.BCEWithLogitsLoss().cuda()
# tensorboard
if global_rank == 0:
os.makedirs("logs", exist_ok=True)
writer = SummaryWriter("logs/" + str(args.id) + "_" + args.run_name)
checkpoint_dir = "checkpoints/" + str(args.id) + "_" + args.run_name
os.makedirs(checkpoint_dir, exist_ok=True)
# for early stopping
best_val_loss = float('inf')
n_last_epochs = 0
early_stopping = False
# GMP layer
gmp = nn.MaxPool2d(args.image_size)
for epoch in range(args.cond_epoch, args.n_epochs):
train_sampler.set_epoch(epoch)
print('Starting Epoch {}'.format(epoch))
# loss sum for epoch
epoch_total_seg = 0
epoch_total_clf = 0
epoch_total_model = 0
epoch_val_loss = 0
# number of steps in one epoch
# can be replaced by len(dataloader), but kept as warm-up epochs may be added
epoch_steps = 0
# ------------------
# Train step
# ------------------
for step, data in enumerate(dataloader):
curr_steps = epoch * len(dataloader) + step
model.train()
if (sync): optimizer.synchronize()
optimizer.zero_grad()
loss, weighted_loss_seg, weighted_loss_clf, in_imgs, in_masks, out_masks = predict_loss(
args, data, model, criterion_BCE, gmp)
# backward prop
loss.backward()
optimizer.step()
# log losses for epoch
epoch_steps += 1
epoch_total_seg += weighted_loss_seg.item()
epoch_total_clf += weighted_loss_clf.item()
epoch_total_model += loss.item()
# --------------
# Log Progress (for certain steps)
# --------------
if step != 0 and step % args.log_interval == 0 and global_rank == 0:
print(f"[Epoch {epoch}/{args.n_epochs - 1}] [Batch {step}/{len(dataloader)}] "
f"[Total Loss {loss:.3f}]"
f"[Pixel-scale Loss {weighted_loss_seg:.3e}]"
f"[Image-scale Loss {weighted_loss_clf:.3e}]"
f"")
writer.add_scalar("LearningRate", optimizer.param_groups[0]['lr'], curr_steps)
writer.add_scalar("Loss/Total Loss", loss, epoch * len(dataloader) + step)
writer.add_scalar("Loss/Pixel-scale", weighted_loss_seg, curr_steps)
writer.add_scalar("Loss/Image-scale", weighted_loss_clf, curr_steps)
in_imgs = denormalize(in_imgs)
writer.add_images('Input Img', in_imgs, epoch * len(dataloader) + step)
in_masks = in_masks.unsqueeze(1)
writer.add_images('Input Mask', in_masks, epoch * len(dataloader) + step)
writer.add_images('Output Mask', out_masks, epoch * len(dataloader) + step)
# save model parameters
if step != 0 and step % args.checkpoint_interval == 0 and global_rank == 0:
save_checkpoints(checkpoint_dir, args.id, epoch, step, get_module,
model)
# ------------------
# Validation
# ------------------
if (args.val_paths_file and val_sampler and val_dataloader):
val_sampler.set_epoch(epoch)
model.eval()
for step, data in enumerate(val_dataloader):
with torch.no_grad():
loss, _, _, _, _, _, _, _, _ = predict_loss(args, data, model, criterion_BCE, gmp)
epoch_val_loss += loss.item()
# early
if epoch_val_loss <= best_val_loss:
best_val_loss = epoch_val_loss
n_last_epochs = 0
else:
n_last_epochs += 1
if (n_last_epochs >= args.n_early):
early_stopping = True
# ------------------
# Step
# ------------------
if (lr_scheduler):
if (args.val_paths_file and args.patience):
lr_scheduler.step(epoch_val_loss) # ReduceLROnPlateau
elif (args.decay_epoch):
lr_scheduler.step() # StepLR
else:
print("Error in scheduler step")
sys.exit()
# --------------
# Log Progress (for epoch)
# --------------
# loss average for epoch
if epoch_steps != 0 and global_rank == 0:
epoch_avg_seg = epoch_total_seg / epoch_steps
epoch_avg_clf = epoch_total_clf / epoch_steps
epoch_avg_model = epoch_total_model / epoch_steps
if (args.val_paths_file):
epoch_val_loss_avg = epoch_val_loss / len(val_dataloader)
best_val_loss_avg = best_val_loss / len(val_dataloader)
else:
epoch_val_loss_avg = 0
best_val_loss_avg = 0
print(f"[Epoch {epoch}/{args.n_epochs - 1}]"
f"[Epoch Total Loss {epoch_avg_model:.3f}]"
f"[Epoch Pixel-scale Loss {epoch_avg_seg:.3e}]"
f"[Epoch Image-scale Loss {epoch_avg_clf:.3e}]"
f"[Epoch Val Loss {epoch_val_loss_avg:.3f} (best Val Loss {best_val_loss_avg:.3f} last for {n_last_epochs:d})]"
f"")
writer.add_scalar("Epoch LearningRate", optimizer.param_groups[0]['lr'], epoch)
writer.add_scalar("Epoch Loss/Total Loss", epoch_avg_model, epoch)
writer.add_scalar("Epoch Loss/Pixel-scale", epoch_avg_seg, epoch)
writer.add_scalar("Epoch Loss/Image-scale", epoch_avg_clf, epoch)
writer.add_scalar("Epoch Loss/Val", epoch_val_loss_avg, epoch)
if torch.max(in_imgs) > 1 or torch.min(in_imgs) < 0:
in_imgs = denormalize(in_imgs)
writer.add_images('Epoch Input Img', in_imgs, epoch)
if len(in_masks.shape) == 3:
in_masks = in_masks.unsqueeze(1)
writer.add_images('Epoch Input Mask', in_masks, epoch)
writer.add_images('Epoch Output Mask', out_masks, epoch)
# save model parameters
if global_rank == 0:
save_checkpoints(checkpoint_dir, args.id, epoch, 'end', # set step to a string 'end'
get_module,
model)
# check early_stopping
if (early_stopping):
print('Early stopping')
break
print('Finished training')
if global_rank == 0:
writer.close()
if __name__ == '__main__':
# constants
SYNC = False
GET_MODULE = True
args = parse_args()
# Init dist
local_rank = int(os.environ["LOCAL_RANK"])
global_rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
args = init_env(args, local_rank, global_rank)
# Init the process group
print('Initializing Process Group...')
dist.init_process_group(backend=args.dist_backend,
init_method=("env://%s:%s" % (args.master_addr, args.master_port)),
world_size=world_size, rank=global_rank)
print('Process group ready!')
model = init_models(args)
# Wrap the model
model = nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True)
train_sampler, dataloader = init_dataset(args, global_rank, world_size)
val_sampler, val_dataloader = init_dataset(args, global_rank, world_size, True)
model = load_dicts(args, GET_MODULE, model)
optimizer = init_optims(args, world_size, model)
lr_scheduler = init_schedulers(args, optimizer)
train(args, global_rank, SYNC, GET_MODULE,
model,
train_sampler, dataloader, val_sampler, val_dataloader,
optimizer,
lr_scheduler)