-
Notifications
You must be signed in to change notification settings - Fork 55
/
inference.py
190 lines (157 loc) · 6.97 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from argparse import ArgumentParser
from typing import List, Dict
import torch
from transformers import AutoModelForCausalLM
import PIL.Image
from deepseek_vl2.models import DeepseekVLV2ForCausalLM, DeepseekVLV2Processor
from deepseek_vl2.serve.app_modules.utils import parse_ref_bbox
def load_pil_images(conversations: List[Dict[str, str]]) -> List[PIL.Image.Image]:
"""
Args:
conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
[
{
"role": "User",
"content": "<image>\nExtract all information from this image and convert them into markdown format.",
"images": ["./examples/table_datasets.png"]
},
{"role": "Assistant", "content": ""},
]
Returns:
pil_images (List[PIL.Image.Image]): the list of PIL images.
"""
pil_images = []
for message in conversations:
if "images" not in message:
continue
for image_path in message["images"]:
pil_img = PIL.Image.open(image_path)
pil_img = pil_img.convert("RGB")
pil_images.append(pil_img)
return pil_images
def main(args):
dtype = torch.bfloat16
# specify the path to the model
model_path = args.model_path
vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=dtype
)
vl_gpt = vl_gpt.cuda().eval()
# single image conversation example
conversation = [
{
"role": "<|User|>",
"content": "<image>\n<image>\n<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image.",
"images": [
"images/incontext_visual_grounding_1.jpeg",
"images/icl_vg_2.jpeg"
],
},
{"role": "<|Assistant|>", "content": ""},
]
# conversation = [
# {
# "role": "<|User|>",
# "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>.",
# "images": ["./images/visual_grounding_1.jpeg"],
# },
# {"role": "<|Assistant|>", "content": ""},
# ]
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
print(f"len(pil_images) = {len(pil_images)}")
# input_ids = batched_input_ids,
# attention_mask = batched_attention_mask,
# labels = batched_labels,
# images_tiles = batched_images,
# images_seq_mask = batched_images_seq_mask,
# images_spatial_crop = batched_images_spatial_crop,
# sft_format = batched_sft_format,
# seq_lens = seq_lens
prepare_inputs = vl_chat_processor.__call__(
conversations=conversation,
images=pil_images,
force_batchify=True,
system_prompt=""
).to(vl_gpt.device, dtype=dtype)
# for key in prepare_inputs.keys():
# value = prepare_inputs[key]
# if isinstance(value, list):
# print(key, len(value), type(value))
# elif isinstance(value, torch.Tensor):
# print(key, value.shape, type(value))
with torch.no_grad():
if args.chunk_size == -1:
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
past_key_values = None
else:
# incremental_prefilling when using 40G GPU for vl2-small
inputs_embeds, past_key_values = vl_gpt.incremental_prefilling(
input_ids=prepare_inputs.input_ids,
images=prepare_inputs.images,
images_seq_mask=prepare_inputs.images_seq_mask,
images_spatial_crop=prepare_inputs.images_spatial_crop,
attention_mask=prepare_inputs.attention_mask,
chunk_size=args.chunk_size
)
# run the model to get the response
outputs = vl_gpt.generate(
# inputs_embeds=inputs_embeds[:, -1:],
# input_ids=prepare_inputs.input_ids[:, -1:],
inputs_embeds=inputs_embeds,
input_ids=prepare_inputs.input_ids,
images=prepare_inputs.images,
images_seq_mask=prepare_inputs.images_seq_mask,
images_spatial_crop=prepare_inputs.images_spatial_crop,
attention_mask=prepare_inputs.attention_mask,
past_key_values=past_key_values,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
# do_sample=False,
# repetition_penalty=1.1,
do_sample=True,
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1,
use_cache=True,
)
answer = tokenizer.decode(outputs[0][len(prepare_inputs.input_ids[0]):].cpu().tolist(), skip_special_tokens=False)
print(f"{prepare_inputs['sft_format'][0]}", answer)
vg_image = parse_ref_bbox(answer, image=pil_images[-1])
if vg_image is not None:
vg_image.save("./vg.jpg", format="JPEG", quality=85)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--model_path", type=str, required=True,
default="deepseek-ai/deepseek-vl2",
help="model name or local path to the model")
parser.add_argument("--chunk_size", type=int, default=-1,
help="chunk size for the model for prefiiling. "
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling."
"Otherwise, default value is -1, which means we do not use incremental_prefilling.")
args = parser.parse_args()
main(args)