generated from devries/aoc_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.go
216 lines (180 loc) · 5.79 KB
/
solution.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
package day18p2
import (
"io"
"regexp"
"sort"
"strconv"
"aoc/utils"
)
func Solve(r io.Reader) any {
lines := utils.ReadLines(r)
re := regexp.MustCompile(`([RDLU])\s+(\d+)\s+\(#([0-9a-f]+)\)`)
pos := utils.Point{}
xmin, ymin, xmax, ymax := 0, 0, 0, 0
segments := SegmentList{}
for _, ln := range lines {
sm := re.FindStringSubmatch(ln)
inst := Instruction{}
actualDirection := []rune(sm[3])[5]
switch actualDirection {
case '3':
inst.Direction = utils.North
case '1':
inst.Direction = utils.South
case '0':
inst.Direction = utils.East
case '2':
inst.Direction = utils.West
default:
panic("Direction not good")
}
distHex := string([]rune(sm[3])[:5])
dist, err := strconv.ParseInt(distHex, 16, 32)
if err != nil {
utils.Check(err, "Unable to convert %s to int", sm[2])
}
inst.Distance = int(dist)
newpos := pos.Add(inst.Direction.Scale(inst.Distance))
// We'll be collecting horizontal segments and calculating
// area by moving up from ymin to ymax.
if inst.Direction == utils.East {
segment := HSegment{pos, newpos}
segments = append(segments, segment)
} else if inst.Direction == utils.West {
segment := HSegment{newpos, pos}
segments = append(segments, segment)
}
pos = newpos
if pos.X > xmax {
xmax = pos.X
}
if pos.Y > ymax {
ymax = pos.Y
}
if pos.X < xmin {
xmin = pos.X
}
if pos.Y < ymin {
ymin = pos.Y
}
}
// There has got to be a simpler way to do whatever it is I do below, but I
// was just not getting it today.
// Sort all line segments by y and x, so we iterate from
// lower left to upper right.
sort.Sort(segments)
ycurrent := ymin
// Current ranges are segments over which we are calculating a filled in area.
currentRanges := []int{}
// Last motion ranges are the ranges over which we last caulculated filled in areas.
lastMotionRanges := []int{}
// This is the last border region calculated, which may be discarded if there has
// been no vertical motion.
lastBorderArea := uint64(0)
var area uint64
for _, s := range segments {
d := s.Left.Y - ycurrent - 1 // hight between end segments. Ends are calculated separately.
if d > 0 {
// There has been a change in Y so we calculate the area of rectangles
// with the current segment
for i := 0; i < len(currentRanges); i += 2 {
area += uint64(d) * uint64(currentRanges[i+1]-currentRanges[i]+1)
}
ycurrent = s.Left.Y
// Save the last segments used to calculate area
lastMotionRanges = make([]int, len(currentRanges))
copy(lastMotionRanges, currentRanges)
} else {
// We didn't move vertically, so the last border calculation we had
// was not a complete border, remove it and recalculate with next
// segment.
area -= lastBorderArea
}
previousRanges := make([]int, len(currentRanges))
copy(previousRanges, currentRanges)
// Add line segment to current ranges and find areas where areas will be
// closed off or opened up by sorting the segments and calculating the
// remaining alternating segments.
// current: x-------------x x---------------x
// added: x---------x
// final: x-----x x-x x---------------x
currentRanges = append(currentRanges, s.Left.X, s.Right.X)
sort.Ints(currentRanges)
// Need to remove duplicate points
for i := 0; i < len(currentRanges)-1; i++ {
if currentRanges[i] == currentRanges[i+1] {
// need to remove duplicates
currentRanges = append(currentRanges[:i], currentRanges[i+2:]...)
i -= 1
}
}
// Since the last time there was movement find all overlap to get points in overlap
// region between the areas just added and the areas added in the next iteration
// lastMovement: x-------------x x---------------x
// current: x---------x
// overlap: x---------------x x---------------x
boundaries := BoundaryList{}
// Use method where we add 1 for start of regions and subtract one for end
// any time sum > 0 there is at least one segment, and when sum == 0 then
// there is no segment in either set of segments here.
for i := 0; i < len(lastMotionRanges); i += 2 {
boundaries = append(boundaries, Boundary{lastMotionRanges[i], 1})
boundaries = append(boundaries, Boundary{lastMotionRanges[i+1], -1})
}
for i := 0; i < len(currentRanges); i += 2 {
boundaries = append(boundaries, Boundary{currentRanges[i], 1})
boundaries = append(boundaries, Boundary{currentRanges[i+1], -1})
}
sort.Sort(boundaries)
current := 0
combinedRanges := []int{}
for _, b := range boundaries {
pos := b.Position
current += b.Incrementor
if current == 1 && b.Incrementor == 1 {
combinedRanges = append(combinedRanges, pos)
}
if current == 0 && b.Incrementor == -1 {
combinedRanges = append(combinedRanges, pos)
}
}
lastBorderArea = 0
for i := 0; i < len(combinedRanges); i += 2 {
v := uint64(combinedRanges[i+1] - combinedRanges[i] + 1)
// keep the area here, because if we have another segment in this row to change
// then we will have to subtract this change and do the problem again.
lastBorderArea += v
area += v
}
}
return area
}
type Instruction struct {
Direction utils.Point
Distance int
}
type HSegment struct {
Left utils.Point
Right utils.Point
}
type SegmentList []HSegment
func (s SegmentList) Len() int { return len(s) }
func (s SegmentList) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s SegmentList) Less(i, j int) bool {
li := s[i].Left
lj := s[j].Left
if li.Y != lj.Y {
return li.Y < lj.Y
}
return li.X < lj.X
}
type Boundary struct {
Position int
Incrementor int
}
type BoundaryList []Boundary
func (s BoundaryList) Len() int { return len(s) }
func (s BoundaryList) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s BoundaryList) Less(i, j int) bool {
return s[i].Position < s[j].Position
}