forked from Alibaba-NLP/CLNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
204 lines (183 loc) · 9.92 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# This code extract document level features of transformer models
import os
import h5py
import pdb
from typing import List
import flair
from flair.data import Dictionary, Sentence, Token, Label
#from flair.datasets import CONLL_03, CONLL_03_DUTCH, CONLL_03_SPANISH, CONLL_03_GERMAN
import flair.datasets as datasets
from flair.data import MultiCorpus, Corpus
from flair.list_data import ListCorpus
import flair.embeddings as Embeddings
from flair.training_utils import EvaluationMetric
from flair.visual.training_curves import Plotter
# initialize sequence tagger
from flair.models import SequenceTagger
from pathlib import Path
import argparse
import yaml
from flair.utils.from_params import Params
# from flair.trainers import ModelTrainer
# from flair.trainers import ModelDistiller
# from flair.trainers import ModelFinetuner
from flair.config_parser import ConfigParser
import numpy as np
import argparse
from flair.training_utils import (
init_output_file,
WeightExtractor,
log_line,
add_file_handler,
Result,
store_embeddings,
)
def predict_embeddings(self,doc_dict,embedding,file_name):
# torch.cuda.empty_cache()
lm_file = h5py.File(file_name, "r")
for key in doc_dict:
if key == 'start':
for i, sentence in enumerate(doc_dict[key]):
for token, token_idx in zip(sentence.tokens, range(len(sentence.tokens))):
word_embedding = torch.zeros(embedding.embedding_length).float()
word_embedding = torch.FloatTensor(word_embedding)
token.set_embedding(embedding.name, word_embedding)
continue
group = lm_file[key]
num_sentences = len(list(group.keys()))
sentences_emb = [group[str(i)][...] for i in range(num_sentences)]
try:
assert len(doc_dict[key])==len(sentences_emb)
except:
pdb.set_trace()
for i, sentence in enumerate(doc_dict[key]):
for token, token_idx in zip(sentence.tokens, range(len(sentence.tokens))):
word_embedding = sentences_emb[i][token_idx]
word_embedding = torch.from_numpy(word_embedding).view(-1)
token.set_embedding(embedding.name, word_embedding)
store_embeddings([sentence], 'cpu')
parser = argparse.ArgumentParser('extract_features.py')
parser.add_argument('--config', help='configuration YAML file.')
parser.add_argument('--test', action='store_true', help='Whether testing the pretrained model.')
parser.add_argument('--zeroshot', action='store_true', help='testing with zeroshot corpus.')
parser.add_argument('--all', action='store_true', help='training/testing with all corpus.')
parser.add_argument('--other', action='store_true', help='training/testing with other corpus.')
parser.add_argument('--quiet', action='store_true', help='print results only')
parser.add_argument('--nocrf', action='store_true', help='without CRF')
parser.add_argument('--parse', action='store_true', help='parse files')
parser.add_argument('--parse_train_and_dev', action='store_true', help='chech the performance on the training and development sets')
parser.add_argument('--keep_order', action='store_true', help='keep the parse order for the prediction')
parser.add_argument('--predict', action='store_true', help='predict files')
parser.add_argument('--debug', action='store_true', help='debugging')
parser.add_argument('--target_dir', default='', help='file dir to parse')
parser.add_argument('--spliter', default='\t', help='file dir to parse')
parser.add_argument('--recur_parse', action='store_true', help='recursively parse the file dirs in target_dir')
parser.add_argument('--parse_test', action='store_true', help='parse the test set')
parser.add_argument('--save_embedding', action='store_true', help='save the pretrained embeddings')
parser.add_argument('--mst', action='store_true', help='use mst to parse the result')
parser.add_argument('--test_speed', action='store_true', help='test the running speed')
parser.add_argument('--predict_posterior', action='store_true', help='test the running speed')
parser.add_argument('--batch_size', default=32, type=int, help='set the mini batch size for extraction')
parser.add_argument('--window_size', default=511, type=int, help='transformer window_size')
parser.add_argument('--stride', default=1, type=int, help='transformer stride')
parser.add_argument('--keep_embedding', default=-1, help='mask out all embeddings except the index, for analysis')
args = parser.parse_args()
config = Params.from_file(args.config)
configparser = ConfigParser(config,all=args.all,zero_shot=args.zeroshot,other_shot=args.other,predict=args.predict)
corpus = configparser.corpus
config = configparser.config
trainer = config['trainer']
embeddings, word_map, char_map, lemma_map, postag_map=configparser.create_embeddings(config['embeddings'])
corpus2id = {x:i for i,x in enumerate(corpus.targets)}
doc_sentence_dict = {}
for corpus_id in range(len(corpus2id)):
corpus_name = corpus.targets[corpus_id].lower()+'_'
doc_name = 'train_'
doc_idx = -1
for sentence in corpus.train_list[corpus_id]:
if '-DOCSTART-' in sentence[0].text:
doc_idx+=1
doc_key='start'
else:
doc_key=corpus_name+doc_name+str(doc_idx)
if doc_key not in doc_sentence_dict:
doc_sentence_dict[doc_key]=[]
doc_sentence_dict[doc_key].append(sentence)
doc_name = 'dev_'
doc_idx = -1
for sentence in corpus.dev_list[corpus_id]:
if '-DOCSTART-' in sentence[0].text:
doc_idx+=1
doc_key='start'
else:
doc_key=corpus_name+doc_name+str(doc_idx)
if doc_key not in doc_sentence_dict:
doc_sentence_dict[doc_key]=[]
doc_sentence_dict[doc_key].append(sentence)
doc_name = 'test_'
doc_idx = -1
for sentence in corpus.test_list[corpus_id]:
if '-DOCSTART-' in sentence[0].text:
doc_idx+=1
doc_key='start'
else:
doc_key=corpus_name+doc_name+str(doc_idx)
if doc_key not in doc_sentence_dict:
doc_sentence_dict[doc_key]=[]
doc_sentence_dict[doc_key].append(sentence)
for idx, embedding in enumerate(embeddings.embeddings):
if embedding.name not in config[trainer]['pretrained_file_dict']:
continue
output_file = config[trainer]['pretrained_file_dict'][embedding.name]
writer = h5py.File(output_file, 'a')
for doc_id, doc_key in enumerate(doc_sentence_dict):
if doc_key!='start':
# pdb.set_trace()
sentences=embedding.add_document_embeddings(doc_sentence_dict[doc_key], window_size=args.window_size, stride=args.stride, batch_size = args.batch_size)
# pdb.set_trace()
# ====================================== debug =========================================
# lm_file = h5py.File('../temp/biaffine-ner/bert_features.hdf5', "r")
# group = lm_file['train_0']
# num_sentences = len(list(group.keys()))
# sentences_emb = [group[str(i)][...] for i in range(num_sentences)]
# idx=-1
# sentfeat=np.concatenate([sentences_emb[idx][:,:,i] for i in range(sentences_emb[idx].shape[-1])],-1)
# for i in range(len(sentences_emb[idx])): np.absolute(sentences[idx][i].embedding.cpu().numpy()-sentfeat[i]).max()
# pdb.set_trace()
# ====================================== debug =========================================
file_key = doc_key.replace('/', ':')
for sentence_index, sentence in enumerate(sentences):
dataset_key ="{}/{}".format(file_key, sentence_index)
if dataset_key not in writer:
writer.create_dataset(dataset_key,
(len(sentence), embedding.embedding_length),
dtype=np.float32)
dset = writer[dataset_key]
for token_id, token in enumerate(sentence):
dset[token_id, :] = token.embedding.cpu().numpy()
store_embeddings(sentences,'none')
if (doc_id+1) % (len(doc_sentence_dict)//10) == 0:
print(f'Processed {doc_id+1}/{(len(doc_sentence_dict))} documents')
# writer = h5py.File(FLAGS.output_file, 'w')
# with tqdm(total=sum(len(e.tokens) for e in orig_examples)) as t:
# for result in estimator.predict(input_fn, yield_single_examples=True):
# document_index = int(result["unique_ids"])
# bert_example = bert_examples[document_index]
# orig_example = orig_examples[document_index]
# file_key = bert_example.doc_key.replace('/', ':')
# t.update(n=(result['extract_indices'] >= 0).sum())
# for output_index, bert_token_index in enumerate(result['extract_indices']):
# if bert_token_index < 0:
# continue
# token_index = bert_example.bert_to_orig_map[bert_token_index]
# sentence_index, token_index = orig_example.unravel_token_index(token_index)
# dataset_key ="{}/{}".format(file_key, sentence_index)
# if dataset_key not in writer:
# writer.create_dataset(dataset_key,
# (len(orig_example.sentence_tokens[sentence_index]), bert_config.hidden_size, len(layer_indexes)),
# dtype=np.float32)
# dset = writer[dataset_key]
# for j, layer_index in enumerate(layer_indexes):
# layer_output = result["layer_output_%d" % j]
# dset[token_index, :, j] = layer_output[output_index]
# writer.close()