-
Notifications
You must be signed in to change notification settings - Fork 318
/
Copy pathStructuredKafkaWordCount.cs
58 lines (50 loc) · 1.88 KB
/
StructuredKafkaWordCount.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using Microsoft.Spark.Sql;
using static Microsoft.Spark.Sql.Functions;
namespace Microsoft.Spark.Examples.Sql.Streaming
{
/// <summary>
/// The example is taken/modified from
/// spark/examples/src/main/python/sql/streaming/structured_kafka_wordcount.py
/// </summary>
internal sealed class StructuredKafkaWordCount : IExample
{
public void Run(string[] args)
{
if (args.Length != 3)
{
Console.Error.WriteLine(
"Usage: StructuredKafkaWordCount " +
"<bootstrap-servers> <subscribe-type> <topics>");
Environment.Exit(1);
}
string bootstrapServers = args[0];
string subscribeType = args[1];
string topics = args[2];
SparkSession spark = SparkSession
.Builder()
.AppName("StructuredKafkaWordCount")
.GetOrCreate();
DataFrame lines = spark
.ReadStream()
.Format("kafka")
.Option("kafka.bootstrap.servers", bootstrapServers)
.Option(subscribeType, topics)
.Load()
.SelectExpr("CAST(value AS STRING)");
DataFrame words = lines
.Select(Explode(Split(lines["value"], " "))
.Alias("word"));
DataFrame wordCounts = words.GroupBy("word").Count();
Spark.Sql.Streaming.StreamingQuery query = wordCounts
.WriteStream()
.OutputMode("complete")
.Format("console")
.Start();
query.AwaitTermination();
}
}
}