-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataset.py
168 lines (140 loc) · 6.42 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch.utils.data as data
import torch
from PIL import Image
import os
import os.path
import numpy as np
from numpy.random import randint
import sys
class VideoRecord(object):
def __init__(self, row):
self._data = row
@property
def path(self):
return self._data[0]
@property
def num_frames(self):
return int(self._data[1])
@property
def label(self):
return int(self._data[2])
class VideoDataset(data.Dataset):
def __init__(self, root_path, list_file,
num_segments=3, new_length=1, modality='RGB',
image_tmpl='img_{:05d}.jpg', transform=None,
force_grayscale=False, random_shift=True, test_mode=False, num_clips=1):
self.root_path = root_path
self.list_file = list_file
self.num_segments = num_segments
self.new_length = new_length
self.modality = modality
self.image_tmpl = image_tmpl
self.transform = transform
self.random_shift = random_shift
self.test_mode = test_mode
self.num_clips = num_clips
if self.modality == 'RGBDiff':
self.new_length += 1# Diff needs one more image to calculate diff
self._parse_list()
def _load_image(self, directory, idx):
if self.modality == 'RGB' or self.modality == 'RGBDiff':
try:
return [
Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(idx))).convert('RGB')]
except Exception:
print('error loading image:', os.path.join(self.root_path, directory, self.image_tmpl.format(idx)))
return [Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(1))).convert('RGB')]
elif self.modality == 'Flow':
x_img = Image.open(os.path.join(self.root_path, directory.replace('frames', 'flow_x'),
self.image_tmpl.format(idx).replace('image_', 'flow_x_'))).convert('L')
y_img = Image.open(os.path.join(self.root_path, directory.replace('frames', 'flow_y'),
self.image_tmpl.format(idx).replace('image_', 'flow_y_'))).convert('L')
return [x_img, y_img]
def _parse_list(self):
# check the frame number is large >3:
# usualy it is [video_id, num_frames, class_idx]
tmp = [x.strip().split(' ') for x in open(self.list_file)]
tmp = [item for item in tmp if int(item[1])>=3]
self.video_list = [VideoRecord(item) for item in tmp]
print('video number:%d'%(len(self.video_list)))
def _sample_indices(self, record):
"""
:param record: VideoRecord
:return: list
"""
if self.modality == 'Flow':
num_frames = record.num_frames - 1
else:
num_frames = record.num_frames
average_duration = (num_frames - self.new_length + 1) // self.num_segments
if average_duration > 0:
offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration, size=self.num_segments)
elif num_frames - self.new_length + 1 > self.num_segments:
offsets = np.sort(randint(num_frames - self.new_length + 1, size=self.num_segments))
else:
offsets = np.zeros((self.num_segments,))
return offsets + 1
def _get_val_indices(self, record):
if self.modality == 'Flow':
num_frames = record.num_frames - 1
else:
num_frames = record.num_frames
if num_frames > self.num_segments + self.new_length - 1:
tick = (num_frames - self.new_length + 1) / float(self.num_segments)
offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)])
else:
offsets = np.zeros((self.num_segments,))
return offsets + 1
def _get_test_indices(self, record):
if self.modality == 'Flow':
num_frames = record.num_frames - 1
else:
num_frames = record.num_frames
tick = (num_frames - self.new_length + 1) / float(self.num_segments)
if self.num_clips == 1:
offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)]) + 1
elif self.num_clips == 2:
offsets = [np.array([int(tick * x) for x in range(self.num_segments)])+1,
np.array([int(tick * x + tick / 2.0) for x in range(self.num_segments)]) + 1]
return offsets
def __getitem__(self, index):
record = self.video_list[index]
# check this is a legit video folder
# while not os.path.exists(os.path.join(self.root_path, record.path, self.image_tmpl.format(1))):
# print(os.path.join(self.root_path, record.path, self.image_tmpl.format(1)))
# index = np.random.randint(len(self.video_list))
# record = self.video_list[index]
if not self.test_mode:
segment_indices = self._sample_indices(record) if self.random_shift else self._get_val_indices(record)
else:
segment_indices = self._get_test_indices(record)
return self.get(record, segment_indices)
def get(self, record, indices):
if self.num_clips > 1:
process_data_final = []
for k in range(self.num_clips):
images = list()
for seg_ind in indices[k]:
p = int(seg_ind)
for i in range(self.new_length):
seg_imgs = self._load_image(record.path, p)
images.extend(seg_imgs)
if p < record.num_frames:
p += 1
process_data, label = self.transform((images, record.label))
process_data_final.append(process_data)
process_data_final = torch.stack(process_data_final, 0)#
return process_data_final, label
else:
images = list()
for seg_ind in indices:
p = int(seg_ind)
for i in range(self.new_length):
seg_imgs = self._load_image(record.path, p)
images.extend(seg_imgs)
if p < record.num_frames:
p += 1
process_data, label = self.transform((images, record.label))
return process_data, label
def __len__(self):
return len(self.video_list)