-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathAudioTranscriber.py
135 lines (116 loc) · 5.38 KB
/
AudioTranscriber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import whisper
import torch
import wave
import os
import threading
from tempfile import NamedTemporaryFile
import custom_speech_recognition as sr
import io
from datetime import timedelta
import pyaudiowpatch as pyaudio
from heapq import merge
PHRASE_TIMEOUT = 3.05
MAX_PHRASES = 30
class AudioTranscriber:
def __init__(self, mic_source, speaker_source):
self.transcript_data = {"You": [], "Speaker": []}
self.transcript_changed_event = threading.Event()
self.audio_model = whisper.load_model('base.en')
print(f'Whisper running on device: {self.audio_model.device}')
self.should_continue = True
self.audio_sources = {
"You": {
"sample_rate": mic_source.SAMPLE_RATE,
"sample_width": mic_source.SAMPLE_WIDTH,
"channels": mic_source.channels,
"last_sample": bytes(),
"last_spoken": None,
"new_phrase": True,
"process_data_func": self.process_mic_data
},
"Speaker": {
"sample_rate": speaker_source.SAMPLE_RATE,
"sample_width": speaker_source.SAMPLE_WIDTH,
"channels": speaker_source.channels,
"last_sample": bytes(),
"last_spoken": None,
"new_phrase": True,
"process_data_func": self.process_speaker_data
}
}
def transcribe_audio_queue(self, audio_queue):
while self.should_continue:
while self.should_continue:
who_spoke, data, time_spoken = audio_queue.get()
self.update_last_sample_and_phrase_status(who_spoke, data, time_spoken)
source_info = self.audio_sources[who_spoke]
temp_file = source_info["process_data_func"](source_info["last_sample"])
text = self.get_transcription(temp_file)
if text != '' and text.lower() != 'you':
self.update_transcript(who_spoke, text, time_spoken)
self.transcript_changed_event.set()
print('Stopping')
def update_last_sample_and_phrase_status(self, who_spoke, data, time_spoken):
source_info = self.audio_sources[who_spoke]
if source_info["last_spoken"] and time_spoken - source_info["last_spoken"] > timedelta(seconds=PHRASE_TIMEOUT):
source_info["last_sample"] = bytes()
source_info["new_phrase"] = True
else:
source_info["new_phrase"] = False
source_info["last_sample"] += data
source_info["last_spoken"] = time_spoken
def process_mic_data(self, data):
temp_file = NamedTemporaryFile().name
audio_data = sr.AudioData(data, self.audio_sources["You"]["sample_rate"], self.audio_sources["You"]["sample_width"])
wav_data = io.BytesIO(audio_data.get_wav_data())
with open(temp_file, 'w+b') as f:
f.write(wav_data.read())
return temp_file
def process_speaker_data(self, data):
temp_file = NamedTemporaryFile().name
with wave.open(temp_file, 'wb') as wf:
wf.setnchannels(self.audio_sources["Speaker"]["channels"])
p = pyaudio.PyAudio()
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(self.audio_sources["Speaker"]["sample_rate"])
wf.writeframes(data)
return temp_file
def get_transcription(self, file_path):
result = self.audio_model.transcribe(file_path, fp16=torch.cuda.is_available())
return result['text'].strip()
def update_transcript(self, who_spoke, text, time_spoken):
source_info = self.audio_sources[who_spoke]
transcript = self.transcript_data[who_spoke]
if source_info["new_phrase"] or len(transcript) == 0:
if len(transcript) > MAX_PHRASES:
transcript.pop(-1)
transcript.insert(0, (f"{who_spoke}: [{text}]\n\n", time_spoken))
else:
transcript[0] = (f"{who_spoke}: [{text}]\n\n", time_spoken)
def get_transcript(self, username="You", speakername="Speaker"):
combined_transcript = list(merge(
self.transcript_data["You"], self.transcript_data["Speaker"],
key=lambda x: x[1], reverse=True))
combined_transcript = combined_transcript[:MAX_PHRASES]
combined_transcript = combined_transcript[::-1]
formatted = "\n\n".join([f'{username if t[0].startswith("You") else speakername}: "{t[0][t[0].index(":")+2:-3]}" ' for t in combined_transcript])
formatted = formatted.replace("[", "")
return formatted
def get_speaker_transcript(self):
transcript = list(merge(self.transcript_data["Speaker"], key=lambda x: x[1], reverse=True))
text_only = []
for item in transcript:
text = item[0]
extracted_text = text.split("[")[1].split("]")[0]
text_only.append(extracted_text)
text_string = " ".join(text_only)
return text_string
def clear_transcript_data(self):
self.transcript_data["You"].clear()
self.transcript_data["Speaker"].clear()
self.audio_sources["You"]["last_sample"] = bytes()
self.audio_sources["Speaker"]["last_sample"] = bytes()
self.audio_sources["You"]["new_phrase"] = True
self.audio_sources["Speaker"]["new_phrase"] = True
def stop(self):
self.should_continue = False