-
Notifications
You must be signed in to change notification settings - Fork 30
/
finetune.py
442 lines (351 loc) · 17.7 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import torch
from torch.autograd import Variable
import torchvision.models as models
import cv2
import numpy as np
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dataset
from prune import *
import argparse
from operator import itemgetter
from heapq import nsmallest
from tqdm import tqdm
import time
class ModifiedResNet18Model(torch.nn.Module):
def __init__(self):
super(ModifiedResNet18Model, self).__init__()
model = models.resnet18(pretrained=True)#squeezenet1_1
#model = torch.load('/home/yq/work/face_class/id_rec_resnet_copy/id_rec_resnet/logs/resnet18-1/model.bin')
modules = list(model.children())[:-1] # delete the last fc layer.
model = nn.Sequential(*modules)
self.features = model
print("start pruning:")
for param in self.features.parameters():
param.requires_grad = False
self.fc = nn.Sequential(
#nn.Linear(512, 100)
nn.Dropout(),
nn.Linear(512,400),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(400,256),
nn.ReLU(inplace=True),
nn.Linear(256, 2))
#modules = list(resnet.children())[:-1] # delete the last fc layer.
#resnet = nn.Sequential(*modules)
#self.classifier = nn.Sequential(
# nn.Dropout(),
# nn.Linear(512, 256),#25088
# nn.ReLU(inplace=True),
#nn.Dropout(),
#nn.Linear(2048, 2048),
#nn.ReLU(inplace=True),
# nn.Linear(256, 100))
#self.features.fc = self.classifier
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)#self.classifier(x)
return x
class FilterPrunner:
def __init__(self, model):
self.model = model
self.reset()
def reset(self):
# self.activations = []
# self.gradients = []
# self.grad_index = 0
# self.activation_to_layer = {}
self.filter_ranks = {}
def forward(self, x):
self.activations = []
self.gradients = []
self.grad_index = 0
self.activation_to_layer = {}
#str=['conv1','conv2']
activation_index = 0
kk = 0
for layer, (name, module) in enumerate(self.model.features._modules.items()):
# print("name: ", layer, "kk: ", kk, "activation_index: ", activation_index)
if layer < 4 or layer > 7 :
x = module(x)
if isinstance(module, torch.nn.modules.
conv.Conv2d): #or isinstance(module, torch.nn.BatchNorm2d):
x.register_hook(self.compute_rank)
self.activations.append(x)
self.activation_to_layer[activation_index] = kk
activation_index += 1
kk += 1
if layer==4 or layer==5 or layer==6 or layer==7:
if layer == 4:
prev = x
for kt in range(2):
x = self.model.features._modules.items()[layer][1][kt].conv1(x)
x.register_hook(self.compute_rank)
self.activations.append(x)
self.activation_to_layer[activation_index] = kk
activation_index += 1
kk += 1
x = self.model.features._modules.items()[layer][1][kt].bn1(x)
x = self.model.features._modules.items()[layer][1][kt].relu(x)
x = self.model.features._modules.items()[layer][1][kt].conv2(x)
x.register_hook(self.compute_rank)
self.activations.append(x)
self.activation_to_layer[activation_index] = kk
activation_index += 1
kk += 1
x = self.model.features._modules.items()[layer][1][kt].bn2(x)
x = x + prev
prev = x
else:
prev = x
for kt in range(2):
if kt == 0:
prev = self.model.features._modules.items()[layer][1][kt].downsample(prev)
x = self.model.features._modules.items()[layer][1][kt].conv1(x)
x.register_hook(self.compute_rank)
self.activations.append(x)
self.activation_to_layer[activation_index] = kk
activation_index += 1
kk += 1
x = self.model.features._modules.items()[layer][1][kt].bn1(x)
x = self.model.features._modules.items()[layer][1][kt].relu(x)
x = self.model.features._modules.items()[layer][1][kt].conv2(x)
x.register_hook(self.compute_rank)
self.activations.append(x)
self.activation_to_layer[activation_index] = kk
activation_index += 1
kk += 1
x = self.model.features._modules.items()[layer][1][kt].bn2(x)
x = x + prev
prev = x
return self.model.fc(x.view(x.size(0), -1))
def compute_rank(self, grad):
activation_index = len(self.activations) - self.grad_index - 1
activation = self.activations[activation_index]
taylor = activation * grad
taylor = taylor.mean(dim=(0,2,3)).data
# Normalize the rank by the filter dimensions
if activation_index not in self.filter_ranks:
self.filter_ranks[activation_index] = \
torch.FloatTensor(activation.size(1)).zero_().cuda()
self.filter_ranks[activation_index] += taylor
self.grad_index += 1
def lowest_ranking_filters(self, num):
data = []
# print("self.filter_ranks: ", self.filter_ranks)
for i in sorted(self.filter_ranks.keys()):
for j in range(self.filter_ranks[i].size(0)):
# print("self.activation_to_layer[i]: ", i," ", self.activation_to_layer[i])
data.append((self.activation_to_layer[i], j, self.filter_ranks[i][j]))
return nsmallest(num, data, itemgetter(2))
def normalize_ranks_per_layer(self):
for i in self.filter_ranks:
v = torch.abs(self.filter_ranks[i])
v = v / torch.sqrt(torch.sum(v * v))
self.filter_ranks[i] = v.cpu()
def model_forward(self, x):
for layer, (name, module) in enumerate(self.model.features._modules.items()):
if layer < 4 or layer > 7 :
x = module(x)
else:
prev = x
if layer == 4:
for kt in range(2):
x = self.model.features._modules.items()[layer][1][kt].conv1(x)
x = self.model.features._modules.items()[layer][1][kt].bn1(x)
x = self.model.features._modules.items()[layer][1][kt].relu(x)
x = self.model.features._modules.items()[layer][1][kt].conv2(x)
x = self.model.features._modules.items()[layer][1][kt].bn2(x)
x += prev
prev = x
else:
for kt in range(2):
if kt == 0:
prev = self.model.features._modules.items()[layer][1][kt].downsample(prev)
x = self.model.features._modules.items()[layer][1][kt].conv1(x)
x = self.model.features._modules.items()[layer][1][kt].bn1(x)
x = self.model.features._modules.items()[layer][1][kt].relu(x)
x = self.model.features._modules.items()[layer][1][kt].conv2(x)
x = self.model.features._modules.items()[layer][1][kt].bn2(x)
x += prev
prev = x
return self.model.fc(x.view(x.size(0), -1))
def get_prunning_plan(self, num_filters_to_prune):
filters_to_prune = self.lowest_ranking_filters(num_filters_to_prune)
# print("filters_to_prune: ", filters_to_prune)
# After each of the k filters are prunned,
# the filter index of the next filters change since the model is smaller.
filters_to_prune_per_layer = {}
for (l, f, _) in filters_to_prune:
if l not in filters_to_prune_per_layer:
filters_to_prune_per_layer[l] = []
filters_to_prune_per_layer[l].append(f)
for l in filters_to_prune_per_layer:
filters_to_prune_per_layer[l] = sorted(filters_to_prune_per_layer[l])
for i in range(len(filters_to_prune_per_layer[l])):
filters_to_prune_per_layer[l][i] = filters_to_prune_per_layer[l][i] - i
# print("filters_to_prune_per_layer:, ", filters_to_prune_per_layer)
filters_to_prune = []
for l in filters_to_prune_per_layer:
for i in filters_to_prune_per_layer[l]:
filters_to_prune.append((l, i))
return filters_to_prune
class PrunningFineTuner_ResNet18:
def __init__(self, train_path, test_path, model):
self.train_data_loader = dataset.loader(train_path)
self.test_data_loader = dataset.test_loader(test_path)
self.model = model
self.criterion = torch.nn.CrossEntropyLoss()
self.prunner = FilterPrunner(self.model)
self.model.train()
def test(self):
self.model.eval()
self.model.cuda()
correct = 0
total = 0
for i, (batch, label) in tqdm(enumerate(self.train_data_loader)):
batch = batch.cuda()
indata = Variable(batch)
output = self.prunner.model_forward(indata)
#output = model(Variable(batch))
pred = output.data.max(1)[1]
correct += pred.cpu().eq(label).sum()
total += label.size(0)
print("Accuracy :", str(100*float(correct) / total) + "%")
self.model.train()
def train(self, optimizer = None, epoches = 10):
if optimizer is None:
optimizer = \
optim.SGD(model.parameters(),
lr=0.005, momentum=0.9)
for i in tqdm(range(epoches)):
print ("Epoch: ", i)
self.train_epoch(optimizer)
self.test()
print ("Finished fine tuning.")
def train_batch(self, optimizer, batch, label, rank_filters):
self.model.zero_grad()
input = Variable(batch)
if rank_filters:
#print("good")
output = self.prunner.forward(input)
#print(output)
self.criterion(output, Variable(label)).backward()
else:
self.criterion(self.prunner.model_forward(input), Variable(label)).backward()
optimizer.step()
def train_epoch(self, optimizer = None, rank_filters = False):
for batch, label in tqdm(self.train_data_loader):
self.train_batch(optimizer, batch.cuda(), label.cuda(), rank_filters)
def get_candidates_to_prune(self, num_filters_to_prune):
self.prunner.reset()
self.train_epoch(rank_filters = True)
self.prunner.normalize_ranks_per_layer()
return self.prunner.get_prunning_plan(num_filters_to_prune)
def total_num_filters(self):
filters = 0
for layer, (name, module) in enumerate(self.model.features._modules.items()):
if layer < 4 or layer > 7 :
if isinstance(module, torch.nn.modules.conv.Conv2d):
filters = filters + module.out_channels
else:
for kt in range(2):
filters = filters + model.features._modules.items()[layer][1][kt].conv1.out_channels
filters = filters + model.features._modules.items()[layer][1][kt].conv2.out_channels
return filters
def batchnorm_modify(self):
for layer, (name, module) in enumerate(self.model.features._modules.items()):
if layer < 4 or layer > 7 :
if isinstance(module, torch.nn.modules.conv.Conv2d):
conv = torch.nn.BatchNorm2d(num_features=module.out_channels, eps=1e-05, momentum=0.1, affine=True)
model.features = torch.nn.Sequential(
*(replace_layers(model.features, i, [layer+1], \
[conv]) for i, _ in enumerate(model.features)))
else:
for kt in range(2):
conv1 = torch.nn.BatchNorm2d(model.features._modules.items()[layer][1][kt].conv1.out_channels, eps=1e-05, momentum=0.1, affine=True)
model.features._modules.items()[layer][1][kt].bn1 = conv1
conv2 = torch.nn.BatchNorm2d(model.features._modules.items()[layer][1][kt].conv2.out_channels, eps=1e-05, momentum=0.1, affine=True)
model.features._modules.items()[layer][1][kt].bn2 = conv2
if layer > 4 and layer < 8 and kt ==0:
convd = torch.nn.BatchNorm2d(model.features._modules.items()[layer][1][kt].conv2.out_channels, eps=1e-05, momentum=0.1, affine=True)
ds = torch.nn.Sequential(
*(replace_layers(model.features._modules.items()[layer][1][kt].downsample, i, [1], \
[convd]) for i, _ in enumerate(model.features._modules.items()[layer][1][kt].downsample)))
model.features._modules.items()[layer][1][kt].downsample = ds
return model
def prune(self):
#Get the accuracy before prunning
# self.test()
self.model.train()
#Make sure all the layers are trainable
for param in self.model.features.parameters():
param.requires_grad = True
number_of_filters = self.total_num_filters()
#print(number_of_filters)
num_filters_to_prune_per_iteration = 512
iterations = int(float(number_of_filters) / num_filters_to_prune_per_iteration)
iterations = int(iterations * 2.0 / 3)
#print(iterations)
print ("Number of prunning iterations to reduce 67% filters", iterations)
for _ in range(iterations):
print ("Ranking filters: ", _, "times ..")
prune_targets = self.get_candidates_to_prune(num_filters_to_prune_per_iteration)
layers_prunned = {}
for layer_index, filter_index in prune_targets:
if layer_index not in layers_prunned:
layers_prunned[layer_index] = 0
layers_prunned[layer_index] = layers_prunned[layer_index] + 1
#print "All channels pruned distribution", prune_targets
print ("Layers that will be prunned", layers_prunned)
print ("Prunning filters.. ")
model = self.model.cpu()
# print("prune targets before loop: ", prune_targets)
for layer_index, filter_index in prune_targets:
#if layer_index ==14:
#print "pause.."
model = prune_resnet18_conv_layer(model, layer_index, filter_index)
model = self.batchnorm_modify()
self.model = model.cuda()
print( "Plan to prune...", model)
message = str(100*float(self.total_num_filters()) / number_of_filters) + "%"
print( "Filters prunned", str(message))
#for batch, label in self.train_data_loader:
#input = Variable(batch.cuda())
#output = self.prunner.forward(input)
self.test()
print( "Fine tuning to recover from prunning iteration.")
optimizer = optim.SGD(self.model.parameters(), lr=0.001, momentum=0.9)
self.train(optimizer, epoches = 10)
print( "Finished. Going to fine tune the model a bit more")
self.train(optimizer, epoches = 4)
torch.save(model, "prunned_18")
print("All Pruning End !")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train", dest="train", action="store_true")
parser.add_argument("--prune", dest="prune", action="store_true")
parser.add_argument("--train_path", type = str, default = "train")
parser.add_argument("--test_path", type = str, default = "test")
parser.set_defaults(train=False)
parser.set_defaults(prune=False)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
if args.train:
model = ModifiedResNet18Model().cuda()
elif args.prune:
model = torch.load('model_18').cuda()
if args.train or args.prune:
print(model)
fine_tuner = PrunningFineTuner_ResNet18(args.train_path, args.test_path, model)
if args.train:
fine_tuner.train(epoches = 10)
torch.save(model, "model_18")
elif args.prune:
fine_tuner.prune()