forked from claws-lab/jodie
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_interaction_prediction.py
255 lines (216 loc) · 12.8 KB
/
evaluate_interaction_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
'''
This code evaluates the validation and test performance in an epoch of the model trained in jodie.py.
The task is: interaction prediction, i.e., predicting which item will a user interact with?
To calculate the performance for one epoch:
$ python evaluate_interaction_prediction.py --network reddit --model jodie --epoch 49
To calculate the performance for all epochs, use the bash file, evaluate_all_epochs.sh, which calls this file once for every epoch.
Paper: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks. S. Kumar, X. Zhang, J. Leskovec. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2019.
'''
from library_data import *
from library_models import *
import json
# INITIALIZE PARAMETERS
parser = argparse.ArgumentParser()
parser.add_argument('--network', required=True, help='Network name')
parser.add_argument('--model', default='jodie', help="Model name")
parser.add_argument('--gpu', default=-1, type=int, help='ID of the gpu to run on. If set to -1 (default), the GPU with most free memory will be chosen.')
parser.add_argument('--epoch', default=50, type=int, help='Epoch id to load')
parser.add_argument('--run', default=0, type=int, help='Current run')
parser.add_argument('--embedding_dim', default=128, type=int, help='Number of dimensions')
parser.add_argument('--train_proportion', default=0.8, type=float, help='Proportion of training interactions')
parser.add_argument("--state_change", default=False, action="store_true", help="True if training with state change of users along with interaction prediction. False otherwise. By default, set to True.")
parser.add_argument('--device', default='gpu', type=str, help='which device to use')
args = parser.parse_args()
args.datapath = "data/%s.csv" % args.network
if args.train_proportion > 0.8:
sys.exit('Training sequence proportion cannot be greater than 0.8.')
if args.network == "mooc":
print("No interaction prediction for %s" % args.network)
sys.exit(0)
if args.device == 'gpu':
# SET GPU
if args.gpu == -1:
args.gpu = select_free_gpu()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device('cuda')
else:
device = torch.device('cpu')
# CHECK IF THE OUTPUT OF THE EPOCH IS ALREADY PROCESSED. IF SO, MOVE ON.
output_fname = "results/interaction_prediction_%s_%s_%s.txt" % (args.model, args.network, args.run)
if os.path.exists(output_fname):
f = open(output_fname, "r")
search_string = 'Test performance of epoch %d' % args.epoch
for line in f:
line = line.strip()
if search_string in line:
print("Output file already has results of epoch %d" % args.epoch)
sys.exit(0)
f.close()
# LOAD NETWORK
[user2id, user_sequence_id, user_timediffs_sequence, user_previous_itemid_sequence,
item2id, item_sequence_id, item_timediffs_sequence,
timestamp_sequence,
feature_sequence,
y_true] = load_network(args)
num_interactions = len(user_sequence_id)
num_features = len(feature_sequence[0])
num_users = len(user2id)
num_items = len(item2id) + 1
true_labels_ratio = len(y_true) / (sum(y_true) + 1)
print("*** Network statistics:\n %d users\n %d items\n %d interactions\n %d/%d true labels ***\n\n" % (num_users, num_items, num_interactions, sum(y_true), len(y_true)))
# SET TRAIN, VALIDATION, AND TEST BOUNDARIES
train_end_idx = validation_start_idx = int(num_interactions * args.train_proportion)
test_start_idx = int(num_interactions * (args.train_proportion + 0.05))
test_end_idx = int(num_interactions * (args.train_proportion + 0.2))
# SET BATCHING TIMESPAN
'''
Timespan indicates how frequently the model is run and updated.
All interactions in one timespan are processed simultaneously.
Longer timespans mean more interactions are processed and the training time is reduced, however it requires more GPU memory.
At the end of each timespan, the model is updated as well. So, longer timespan means less frequent model updates.
'''
timespan = timestamp_sequence[-1] - timestamp_sequence[0]
tbatch_timespan = timespan / 500
# INITIALIZE MODEL PARAMETERS
model = JODIE(args, num_features, num_users, num_items).to(device)
weight = torch.Tensor([1, true_labels_ratio]).to(device)
crossEntropyLoss = nn.CrossEntropyLoss(weight=weight)
MSELoss = nn.MSELoss()
MSELoss_sum = nn.MSELoss(reduction='sum')
CELoss = nn.CrossEntropyLoss()
# INITIALIZE MODEL
learning_rate = 1e-3
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
# LOAD THE MODEL
model, optimizer, user_embeddings_dystat, item_embeddings_dystat, user_embeddings_timeseries, item_embeddings_timeseries, train_end_idx_training = load_model(model, optimizer, args, args.epoch, device)
if train_end_idx != train_end_idx_training:
sys.exit('Training proportion during training and testing are different. Aborting.')
# SET THE USER AND ITEM EMBEDDINGS TO THEIR STATE AT THE END OF THE TRAINING PERIOD
set_embeddings_training_end(user_embeddings_dystat, item_embeddings_dystat, user_embeddings_timeseries, item_embeddings_timeseries, user_sequence_id, item_sequence_id, train_end_idx)
# LOAD THE EMBEDDINGS: DYNAMIC AND STATIC
item_embeddings = item_embeddings_dystat[:, :args.embedding_dim]
item_embeddings = item_embeddings.clone()
item_embeddings_static = item_embeddings_dystat[:, args.embedding_dim:]
item_embeddings_static = item_embeddings_static.clone()
user_embeddings = user_embeddings_dystat[:, :args.embedding_dim]
user_embeddings = user_embeddings.clone()
user_embeddings_static = user_embeddings_dystat[:, args.embedding_dim:]
user_embeddings_static = user_embeddings_static.clone()
# PERFORMANCE METRICS
validation_ranks = []
test_ranks = []
'''
Here we use the trained model to make predictions for the validation and testing interactions.
The model does a forward pass from the start of validation till the end of testing.
For each interaction, the trained model is used to predict the embedding of the item it will interact with.
This is used to calculate the rank of the true item the user actually interacts with.
After this prediction, the errors in the prediction are used to calculate the loss and update the model parameters.
This simulates the real-time feedback about the predictions that the model gets when deployed in-the-wild.
Please note that since each interaction in validation and test is only seen once during the forward pass, there is no data leakage.
'''
tbatch_start_time = None
loss = 0
edge_ranks = defaultdict(list)
# FORWARD PASS
print("*** Making interaction predictions by forward pass (no t-batching) ***")
with trange(train_end_idx, test_end_idx) as progress_bar:
for j in progress_bar:
progress_bar.set_description('%dth interaction for validation and testing' % j)
# LOAD INTERACTION J
userid = user_sequence_id[j]
itemid = item_sequence_id[j]
feature = feature_sequence[j]
user_timediff = user_timediffs_sequence[j]
item_timediff = item_timediffs_sequence[j]
timestamp = timestamp_sequence[j]
if not tbatch_start_time:
tbatch_start_time = timestamp
itemid_previous = user_previous_itemid_sequence[j]
# LOAD USER AND ITEM EMBEDDING
user_embedding_input = user_embeddings[torch.LongTensor([userid]).to(device)]
user_embedding_static_input = user_embeddings_static[torch.LongTensor([userid]).to(device)]
item_embedding_input = item_embeddings[torch.LongTensor([itemid]).to(device)]
item_embedding_static_input = item_embeddings_static[torch.LongTensor([itemid]).to(device)]
feature_tensor = Variable(torch.Tensor(feature).to(device)).unsqueeze(0)
user_timediffs_tensor = Variable(torch.Tensor([user_timediff]).to(device)).unsqueeze(0)
item_timediffs_tensor = Variable(torch.Tensor([item_timediff]).to(device)).unsqueeze(0)
item_embedding_previous = item_embeddings[torch.LongTensor([itemid_previous]).to(device)]
# PROJECT USER EMBEDDING
user_projected_embedding = model.forward(user_embedding_input, item_embedding_previous, timediffs=user_timediffs_tensor, features=feature_tensor, select='project')
user_item_embedding = torch.cat([user_projected_embedding, item_embedding_previous, item_embeddings_static[torch.LongTensor([itemid_previous]).to(device)], user_embedding_static_input], dim=1)
# PREDICT ITEM EMBEDDING
predicted_item_embedding = model.predict_item_embedding(user_item_embedding)
# CALCULATE PREDICTION LOSS
if args.model == 'jodie':
loss += MSELoss(predicted_item_embedding, torch.cat([item_embedding_input, item_embedding_static_input], dim=1).detach())
elif args.model == 'jodie-sum':
loss += predicted_item_embedding.shape[0] * MSELoss(predicted_item_embedding, torch.cat([item_embedding_input, item_embedding_static_input], dim=1).detach())
else:
loss += MSELoss_sum(predicted_item_embedding, torch.cat([item_embedding_input, item_embedding_static_input], dim=1).detach())
# CALCULATE DISTANCE OF PREDICTED ITEM EMBEDDING TO ALL ITEMS
euclidean_distances = nn.PairwiseDistance()(predicted_item_embedding.repeat(num_items, 1), torch.cat([item_embeddings, item_embeddings_static], dim=1)).squeeze(-1)
# CALCULATE RANK OF THE TRUE ITEM AMONG ALL ITEMS
true_item_distance = euclidean_distances[itemid]
euclidean_distances_smaller = (euclidean_distances < true_item_distance).data.cpu().numpy()
true_item_rank = np.sum(euclidean_distances_smaller) + 1
edge_ranks[str((userid, itemid))].append(int(true_item_rank))
if j < test_start_idx:
validation_ranks.append(int(true_item_rank))
else:
test_ranks.append(int(true_item_rank))
# UPDATE USER AND ITEM EMBEDDING
user_embedding_output = model.forward(user_embedding_input, item_embedding_input, timediffs=user_timediffs_tensor, features=feature_tensor, select='user_update')
item_embedding_output = model.forward(user_embedding_input, item_embedding_input, timediffs=item_timediffs_tensor, features=feature_tensor, select='item_update')
# SAVE EMBEDDINGS
item_embeddings[itemid, :] = item_embedding_output.squeeze(0)
user_embeddings[userid, :] = user_embedding_output.squeeze(0)
user_embeddings_timeseries[j, :] = user_embedding_output.squeeze(0)
item_embeddings_timeseries[j, :] = item_embedding_output.squeeze(0)
# CALCULATE LOSS TO MAINTAIN TEMPORAL SMOOTHNESS
loss += MSELoss(item_embedding_output, item_embedding_input.detach())
loss += MSELoss(user_embedding_output, user_embedding_input.detach())
# CALCULATE STATE CHANGE LOSS
if args.state_change:
loss += calculate_state_prediction_loss(model, [j], user_embeddings_timeseries, y_true, crossEntropyLoss)
# UPDATE THE MODEL IN REAL-TIME USING ERRORS MADE IN THE PAST PREDICTION
if timestamp - tbatch_start_time > tbatch_timespan:
tbatch_start_time = timestamp
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# RESET LOSS FOR NEXT T-BATCH
loss = 0
item_embeddings.detach_()
user_embeddings.detach_()
item_embeddings_timeseries.detach_()
user_embeddings_timeseries.detach_()
# print(edge_ranks)
json.dump(edge_ranks, open('results/edge_ranks_%s_%s_%s_%s.json' % (args.epoch, args.run, args.model, args.network), 'w'))
json.dump(validation_ranks, open('results/validation_ranks_%s_%s_%s_%s.json' % (args.epoch, args.run, args.model, args.network), 'w'))
json.dump(test_ranks, open('results/test_ranks_%s_%s_%s_%s.json' % (args.epoch, args.run, args.model, args.network), 'w'))
# CALCULATE THE PERFORMANCE METRICS
performance_dict = dict()
ranks = validation_ranks
mrr = np.mean([1.0 / r for r in ranks])
rec10 = sum(np.array(ranks) <= 10) * 1.0 / len(ranks)
performance_dict['validation'] = [mrr, rec10]
ranks = test_ranks
mrr = np.mean([1.0 / r for r in ranks])
rec10 = sum(np.array(ranks) <= 10) * 1.0 / len(ranks)
performance_dict['test'] = [mrr, rec10]
# PRINT AND SAVE THE PERFORMANCE METRICS
fw = open(output_fname, "a")
metrics = ['Mean Reciprocal Rank', 'Recall@10']
print('\n\n*** Validation performance of epoch %d ***' % args.epoch)
fw.write('\n\n*** Validation performance of epoch %d ***\n' % args.epoch)
for i in range(len(metrics)):
print(metrics[i] + ': ' + str(performance_dict['validation'][i]))
fw.write("Validation: " + metrics[i] + ': ' + str(performance_dict['validation'][i]) + "\n")
print('\n\n*** Test performance of epoch %d ***' % args.epoch)
fw.write('\n\n*** Test performance of epoch %d ***\n' % args.epoch)
for i in range(len(metrics)):
print(metrics[i] + ': ' + str(performance_dict['test'][i]))
fw.write("Test: " + metrics[i] + ': ' + str(performance_dict['test'][i]) + "\n")
fw.flush()
fw.close()