-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_again.py
513 lines (462 loc) · 21.5 KB
/
check_again.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import dash
from dash import dcc
from dash import html
from dash.dependencies import Input, Output, State
import plotly.graph_objs as go
import pandas as pd
from wordcloud import WordCloud
from flask import Flask
from distribution_of_users import generate_sunburst_chart
from wordcloud_of_tags import update_wordcloud
from genre_wise_movie_releases_over_time import update_plot_genre
from MovieGenreDistributionByAgeGroup import update_pie_chart_movie
from genre_vs_genre_analysis import get_genre_vs_genre_analysis
from movie_recommendation import recommended_plot
## Need for movie recommender
# Load data
movies = pd.read_csv('movies.csv')
ratings = pd.read_csv('ratings.csv')
new_ratings = ratings.groupby('movieId')['rating'].mean().reset_index()
tags = pd.read_csv('tags.csv')
tags.sort_values(by='movieId')
new_tags = tags.groupby('movieId')['tag'].apply(list).reset_index()
movies_tags = movies.merge(new_tags, on='movieId')
movies_tags_ratings = movies_tags.merge(new_ratings, on='movieId')
# Define functions
def gen(obj):
genres_list = obj.split('|')
return genres_list
def movie_title(movie_string):
parts = movie_string.split(" (")
return parts[0]
# Clean data
movies_tags_ratings['genres'] = movies_tags_ratings['genres'].apply(gen)
movies_tags_ratings['genres'] = movies_tags_ratings['genres'].apply(lambda x: [i.replace(' ', '') for i in x])
movies_tags_ratings['tag'] = movies_tags_ratings['tag'].apply(lambda x: [i.replace(' ', '') if isinstance(i, str) else i for i in x])
movies_tags_ratings['title'] = movies_tags_ratings['title'].apply(movie_title)
movies_tags_ratings['tags'] = movies_tags_ratings['genres'] + movies_tags_ratings['tag']
# Merge and process data
new_movies_df = movies_tags_ratings[['movieId', 'title', 'tags']]
new_movies_df['tags'] = new_movies_df['tags'].apply(lambda x: " ".join(str(tag) for tag in x))
new_movies_df['tags'] = new_movies_df['tags'].apply(lambda x: x.lower())
movie_options = [{'label': f"{title}", 'value': f"{title}"} for title in new_movies_df['title']]
##
#### Implemented by Abhishek
#this code is required for the genre vs genre analysis to work
genre_dict={'Mystery': 1514, 'Comedy': 8374, 'Documentary': 2471, 'War': 1194, 'Adventure': 2329, 'Drama': 13344, 'Animation': 1027, 'Sci-Fi': 1743, 'Film-Noir': 330, 'Romance': 4127, 'Thriller': 4178, 'Musical': 1036, 'Horror': 2611, 'IMAX': 196, 'Crime': 2939, 'Fantasy': 1412, '(no genres listed)': 246, 'Western': 676, 'Children': 1139, 'Action': 3520}
ratings_sum={'Adventure': 15339519.0, 'Children': 5688990.5, 'Fantasy': 7402463.5, 'Drama': 32546369.5, 'Mystery': 5705116.5, 'Sci-Fi': 10826318.5, 'Thriller': 18635056.5, 'Crime': 12119823.0, 'Action': 19334567.5, 'Comedy': 25702738.5, 'Romance': 13465940.5, 'War': 3994742.5, 'Horror': 4859261.0, 'Musical': 3098794.5, 'Western': 1512870.0, 'Animation': 4125665.0, 'IMAX': 1800063.5, 'Film-Noir': 859254.5, 'Documentary': 914806.0, '(no genres listed)': 1085.5}
rating_count={'Adventure': 4380351, 'Children': 1669249, 'Fantasy': 2111403, 'Drama': 8857853, 'Mystery': 1557282, 'Sci-Fi': 3150141, 'Thriller': 5313506, 'Crime': 3298335, 'Action': 5614208, 'Comedy': 7502234, 'Romance': 3802002, 'War': 1048618, 'Horror': 1482737, 'Musical': 870915, 'Western': 423714, 'Animation': 1140476, 'IMAX': 492366, 'Film-Noir': 216689, 'Documentary': 244619, '(no genres listed)': 361}
genre_avg_ratings={'Mystery': 3.663508921312903, 'Comedy': 3.4260113054324886, 'Documentary': 3.7397176834178865, 'War': 3.8095307347384844, 'Adventure': 3.5018926565473865, 'Drama': 3.6742955093068264, 'Animation': 3.6174939235897994, 'Sci-Fi': 3.4367726714455005, 'Film-Noir': 3.96538126070082, 'Romance': 3.541802581902903, 'Thriller': 3.50711121809216, 'Musical': 3.558090628821412, 'Horror': 3.2772238097518307, 'IMAX': 3.655945983272606, 'Crime': 3.6745276025631113, 'Fantasy': 3.5059453358738244, '(no genres listed)': 3.0069252077562325, 'Western': 3.5704980246109406, 'Children': 3.4081137685270444, 'Action': 3.44386376493354}
# Sample data
data1 = genre_dict
data2 = genre_avg_ratings
data3 = rating_count
df1 = pd.DataFrame.from_dict(data1, orient='index', columns=['Count'])
df1['Genre'] = df1.index
df1.reset_index(drop=True, inplace=True)
df2 = pd.DataFrame.from_dict(data2, orient='index', columns=['Average Rating'])
df2['Genre'] = df2.index
df2.reset_index(drop=True, inplace=True)
df3 = pd.DataFrame.from_dict(data3, orient='index', columns=['Total Ratings'])
df3['Genre'] = df3.index
df3.reset_index(drop=True, inplace=True)
#Till Here
movies_df = pd.read_csv("movies.csv")
ratings_df = pd.read_csv("ratings.csv")
users_df = pd.read_csv("users.csv")
tags_df = pd.read_csv('tags.csv')
genome_tags_df = pd.read_csv('genome-tags.csv')
genome_scores_df = pd.read_csv('genome-scores.csv')
# Merge movie data with ratings
movie_ratings = pd.merge(movies_df, ratings_df, on='movieId')
# Convert timestamp to datetime
movie_ratings['timestamp'] = pd.to_datetime(movie_ratings['timestamp'], unit='s')
# Extract year from timestamp
movie_ratings['year'] = movie_ratings['timestamp'].dt.year
########################
# Create app
server = Flask(__name__)
app = dash.Dash(server=server)
# Define tab styles
tab_style = {
'borderRadius': '10px 10px 0px 0px',
'backgroundColor': '#007bff',
'color': 'white',
'fontWeight': 'bold',
'padding': '12px 20px',
'marginRight': '2px',
'cursor': 'pointer',
'fontSize': '16px'
}
tab_selected_style = {
'borderTop': 'none',
'borderBottom': '3px solid #007bff',
'backgroundColor': '#007bff',
'color': 'white',
'fontWeight': 'bold',
'padding': '12px 20px',
'marginRight': '2px',
'cursor': 'pointer',
'fontSize': '16px'
}
graph_style = {
'font_family': 'Arial',
'background_color': '#f9f9f9',
'plot_background_color': '#ffffff',
'grid_color': '#e0e0e0',
'title_font_size': 20,
'title_font_color': '#333333',
'xaxis_title_font_size': 14,
'xaxis_title_font_color': '#666666',
'yaxis_title_font_size': 14,
'yaxis_title_font_color': '#666666',
}
# Define age range options (multiples of 5)
age_range_options = [{'label': str(i), 'value': i} for i in range(10, 91) if i % 5 == 0]
app.layout = html.Div(style={'backgroundColor': '#f0f0f0'},children=[
html.H1('MOVIE ANALYSIS', style={'textAlign': 'center', 'color': '#ffffff', 'fontFamily': 'Arial, sans-serif', 'marginBottom': '20px', 'fontSize': '36px', 'fontWeight': 'bold', 'backgroundColor': '#007bff', 'padding': '20px'}),
dcc.Tabs(id='tabs', value='tab1', children=[
dcc.Tab(label='MOVIE RECOMMENDATION', value='tab1', style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'}, children=[
html.Div([
dcc.Dropdown(
id='movie-dropdown-recommender',
options=movie_options,
value=movie_options[0]['value']
),
html.Div(id='output-graph'),
])
]),
dcc.Tab(
label='USER-DISTRIBUTION',
value='tab2',
style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'},
children=[
html.Div([
html.H2("User Distribution for Each Movie", style={'textAlign': 'center'}),
dcc.Dropdown(
id='movie-dropdown',
options=[{'label': movie_title, 'value': movie_id} for movie_id, movie_title in zip(movies_df['movieId'], movies_df['title'])],
placeholder="Select a movie"
),
html.Div([
html.Label('Layer 1:'),
dcc.Dropdown(
id='layer1-dropdown',
options=[
{'label': 'Gender', 'value': 'gender'},
{'label': 'Age Group', 'value': 'age_group'},
{'label': 'Occupation', 'value': 'occupation'}
],
placeholder="Layer 1",
multi=False,
style={'width': '30%', 'display': 'inline-block', 'margin-right': '5px'}
),
]),
html.Div([
html.Label('Layer 2:'),
dcc.Dropdown(
id='layer2-dropdown',
placeholder="Layer 2",
multi=False,
style={'width': '30%', 'display': 'inline-block', 'margin-right': '5px'}
),
]),
html.Div([
html.Label('Layer 3:'),
dcc.Dropdown(
id='layer3-dropdown',
placeholder="Layer 3",
multi=False,
style={'width': '30%', 'display': 'inline-block'}
),
]),
dcc.Graph(id='sunburst-chart')
])
]),
dcc.Tab(label='MOVIE TAG WORDCLOUD', value='tab3', style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'}, children=[
html.Div([
html.H2("Movie Tag Wordcloud", style={'textAlign': 'center'}),
dcc.Dropdown(
id='movie-dropdown-wordcloud',
options=[{'label': movie, 'value': movieId} for movieId, movie in zip(movies_df['movieId'][:990], movies_df['title'][:990])],
value=None,
placeholder="Select a movie"
),
dcc.Graph(id='wordcloud-graph')
])
]),
dcc.Tab(label='GENRE-LINE-PLOT', value='tab4',style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'}, children=[
html.H2(children='Genre-wise Movie Releases Over Time', style={'textAlign': 'center'}),
dcc.Graph(
id='genre-line-plot',
config={'displayModeBar': False} # Hide the plotly modebar
)
]),
dcc.Tab(label='MOVIE-GENRE-DISTRIBUTION', value='tab5',style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'}, children=[
html.H2("Movie Genre Distribution by Age Group", style={'textAlign': 'center'}),
html.Div([
html.Label('Minimum Age:'),
dcc.Dropdown(
id='min-age-dropdown',
options=age_range_options,
value=10
)
]),
html.Div([
html.Label('Maximum Age:'),
dcc.Dropdown(
id='max-age-dropdown',
options=age_range_options,
value=20
)
]),
dcc.Graph(id='genre-pie-chart', style={'width': '100%', 'height': '80vh'})
]),
dcc.Tab(label='GENRE VS GENRE', value='tab6',style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'}, children=[
html.H2(children=''),
html.H2("Genre vs Genre Analysis", style={'textAlign': 'center'}),
html.Div([
html.Div([
html.Label('Select Genre 1:', style={'font-weight': 'bold'}),
dcc.Dropdown(
id='genre1-dropdown',
options=[{'label': genre, 'value': genre} for genre in df1['Genre']],
value='Action',
style={'width': '200px'}
),
], style={'width': '48%', 'display': 'inline-block'}),
html.Div([
html.Label('Select Genre 2:', style={'font-weight': 'bold'}),
dcc.Dropdown(
id='genre2-dropdown',
options=[{'label': genre, 'value': genre} for genre in df1['Genre']],
value='Comedy'
),
], style={'width': '48%', 'display': 'inline-block'}),
]),
html.Div([
html.Div([
dcc.Graph(id='genre-count', config={'displayModeBar': False}),
], style={'width': '32%', 'display': 'inline-block'}),
html.Div([
dcc.Graph(id='average-rating', config={'displayModeBar': False}),
], style={'width': '32%', 'display': 'inline-block'}),
html.Div([
dcc.Graph(id='total-ratings', config={'displayModeBar': False}),
], style={'width': '32%', 'display': 'inline-block'}),
]),
]),
####### Implemented by Abhishek
dcc.Tab(label='TEMPORAL ANALYSIS', value='tab7', style={'font-weight': 'bold', 'backgroundColor': '#ffffff', 'marginBottom': '10px', 'width': '200px', 'textAlign': 'center'},
selected_style={'backgroundColor': '#f0f0f0'},children=[
html.Div([
html.Div([
dcc.Graph(id='movie-rating-graph'),
html.P("Select Genre:"),
dcc.Dropdown(
id='genre-dropdown',
options=[{'label': genre, 'value': genre} for genre in movie_ratings['genres'].unique()],
value=movie_ratings['genres'].unique()[0]
)
], className='six columns'),
html.Div([
dcc.Graph(id='user-rating-graph')
], className='six columns')
], className='row'),
html.Div([
html.Div([
dcc.Graph(id='average-rating-by-genre')
], className='six columns'),
html.Div([
dcc.Graph(id='average-rating-by-year')
], className='six columns')
], className='row')
]
),
# Add other tabs here...
])
])
######################################################
@app.callback(
Output('output-graph', 'children'),
[Input('movie-dropdown-recommender', 'value')]
)
def recommend_movies(movie_name):
return recommended_plot(movie_name)
@app.callback(
Output('sunburst-chart', 'figure'),
[Input('movie-dropdown', 'value'),
Input('layer1-dropdown', 'value'),
Input('layer2-dropdown', 'value'),
Input('layer3-dropdown', 'value'),
Input('tabs', 'value')]
)
def update_sunburst_chart(selected_movie_id, layer1, layer2, layer3, selected_tab):
if selected_tab == 'tab1':
return generate_sunburst_chart(selected_movie_id, layer1, layer2, layer3)
else:
return {}
# Callback to update the second and third dropdowns based on the first dropdown
@app.callback(
Output('layer2-dropdown', 'options'),
Output('layer2-dropdown', 'value'),
Input('layer1-dropdown', 'value')
)
def update_layer2_options(selected_layer1):
if selected_layer1 == 'gender':
options = [
{'label': 'Age Group', 'value': 'age_group'},
{'label': 'Occupation', 'value': 'occupation'}
]
value = 'age_group'
elif selected_layer1 == 'age_group':
options = [
{'label': 'Gender', 'value': 'gender'},
{'label': 'Occupation', 'value': 'occupation'}
]
value = 'gender'
elif selected_layer1 == 'occupation':
options = [
{'label': 'Gender', 'value': 'gender'},
{'label': 'Age Group', 'value': 'age_group'}
]
value = 'gender'
else:
options = []
value = None
return options, value
# Callback to update the third dropdown based on the first two dropdowns
@app.callback(
Output('layer3-dropdown', 'options'),
Output('layer3-dropdown', 'value'),
Input('layer1-dropdown', 'value'),
Input('layer2-dropdown', 'value')
)
def update_layer3_options(selected_layer1, selected_layer2):
if selected_layer1 == 'gender':
if selected_layer2 == 'age_group':
options = [{'label': 'Occupation', 'value': 'occupation'}]
value = 'occupation'
elif selected_layer2 == 'occupation':
options = [{'label': 'Age Group', 'value': 'age_group'}]
value = 'age_group'
else:
options = []
value = None
elif selected_layer1 == 'age_group':
if selected_layer2 == 'gender':
options = [{'label': 'Occupation', 'value': 'occupation'}]
value = 'occupation'
elif selected_layer2 == 'occupation':
options = [{'label': 'Gender', 'value': 'gender'}]
value = 'gender'
else:
options = []
value = None
elif selected_layer1 == 'occupation':
if selected_layer2 == 'gender':
options = [{'label': 'Age Group', 'value': 'age_group'}]
value = 'age_group'
elif selected_layer2 == 'age_group':
options = [{'label': 'Gender', 'value': 'gender'}]
value = 'gender'
else:
options = []
value = None
else:
options = []
value = None
return options, value
# Callback to update the wordcloud
@app.callback(
Output('wordcloud-graph', 'figure'),
[Input('movie-dropdown-wordcloud', 'value')]
)
def update_wordcloud_callback(movie_id):
return update_wordcloud(movie_id)
#Callback to update_plot_for_genre
@app.callback(
Output('genre-line-plot', 'figure'),
[Input('genre-line-plot', 'clickData')]
)
def update_plot(clickData):
return update_plot_genre(clickData)
# Define callback to update the pie chart based on selected age range
@app.callback(
Output('genre-pie-chart', 'figure'),
[Input('min-age-dropdown', 'value'),
Input('max-age-dropdown', 'value')]
)
def update_pie_chart(min_age, max_age):
return update_pie_chart_movie(min_age,max_age)
@app.callback(
[Output('genre-count', 'figure'),
Output('average-rating', 'figure'),
Output('total-ratings', 'figure')],
[Input('genre1-dropdown', 'value'),
Input('genre2-dropdown', 'value')]
)
def update_genre_vs_genre(genre1,genre2):
return get_genre_vs_genre_analysis(genre1,genre2)
# Temporal analysis implementation by Abhishek
@app.callback(
dash.dependencies.Output('movie-rating-graph', 'figure'),
[dash.dependencies.Input('genre-dropdown', 'value')]
)
def update_movie_rating_graph(selected_genre):
data = movie_ratings[movie_ratings['genres'] == selected_genre]
avg_rating = data.groupby('year')['rating'].mean().reset_index()
return {
'data': [go.Scatter(x=avg_rating['year'], y=avg_rating['rating'], mode='lines+markers')],
'layout': go.Layout(title=f'Average Rating for {selected_genre} Movies Over Time',
xaxis=dict(title='Year'), yaxis=dict(title='Average Rating'),
template='plotly_dark')
}
@app.callback(
dash.dependencies.Output('user-rating-graph', 'figure'),
[dash.dependencies.Input('genre-dropdown', 'value')]
)
def update_user_rating_graph(selected_genre):
data = movie_ratings[movie_ratings['genres'] == selected_genre]
user_count = data.groupby('year')['userId'].count().reset_index()
return {
'data': [go.Scatter(x=user_count['year'], y=user_count['userId'], mode='lines+markers')],
'layout': go.Layout(title=f'Number of Ratings for {selected_genre} Movies Over Time',
xaxis=dict(title='Year'), yaxis=dict(title='Number of Ratings'),
template='plotly_dark')
}
@app.callback(
dash.dependencies.Output('average-rating-by-genre', 'figure'),
[dash.dependencies.Input('genre-dropdown', 'value')]
)
def update_average_rating_by_genre(selected_genre):
data = movie_ratings[movie_ratings['genres'] == selected_genre]
genre_rating = data.groupby('genres')['rating'].mean().reset_index()
return {
'data': [go.Bar(x=genre_rating['genres'], y=genre_rating['rating'])],
'layout': go.Layout(title=f'Average Rating for Each Genre - {selected_genre}',
xaxis=dict(title='Genre'), yaxis=dict(title='Average Rating'),
template='plotly_dark')
}
@app.callback(
dash.dependencies.Output('average-rating-by-year', 'figure'),
[dash.dependencies.Input('genre-dropdown', 'value')]
)
def update_average_rating_by_year(selected_genre):
data = movie_ratings[movie_ratings['genres'] == selected_genre]
year_rating = data.groupby('year')['rating'].mean().reset_index()
return {
'data': [go.Bar(x=year_rating['year'], y=year_rating['rating'])],
'layout': go.Layout(title=f'Average Rating Over Time for {selected_genre} Movies',
xaxis=dict(title='Year'), yaxis=dict(title='Average Rating'),
template='plotly_dark')
}
####################
if __name__ == '__main__':
app.run_server(debug=True, port=8051)