Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Questions about AP on scannet #32

Open
sunmaosheng755 opened this issue Mar 4, 2022 · 4 comments
Open

Questions about AP on scannet #32

sunmaosheng755 opened this issue Mar 4, 2022 · 4 comments

Comments

@sunmaosheng755
Copy link

sunmaosheng755 commented Mar 4, 2022

Hi, Thanks for your great work.
By training your model 3detr-m, I got the following results on scannet(epoch1080):
====================Final Eval Numbers.
mAP0. 25, mAP0. 50: 62.12, 43.58
AR0. 25, AR0. 50: 74.09, 54.71
====================Best Eval Numbers.
mAP0. 25, mAP0. 50: 63.78, 39.67
AR0. 25, AR0. 50: 78.57, 53.71
With your help, the current result is close to 65.0. Is this a reasonable result?
Can you help me see what caused the result not to reach 65.0 / 47.0?

@sunmaosheng755 sunmaosheng755 changed the title Question about the reported AP mismatch between the paper and GitHub Questions about AP on scannet Mar 4, 2022
@sunmaosheng755
Copy link
Author

  • _libgcc_mutex=0.1=main
  • blas=1.0=mkl
  • bzip2=1.0.8=h7b6447c_0
  • ca-certificates=2021.7.5=h06a4308_1
  • certifi=2021.5.30=py36h06a4308_0
  • cudatoolkit=10.2.89=hfd86e86_1
  • dataclasses=0.8=pyh4f3eec9_6

- ffmpeg=4.3=hf484d3e_0

  • freetype=2.10.4=h5ab3b9f_0
  • giflib=5.2.1=h7b6447c_0
  • gmp=6.2.1=h2531618_2
  • gnutls=3.6.15=he1e5248_0
  • intel-openmp=2021.3.0=h06a4308_3350
  • jpeg=9b=h024ee3a_2
  • lame=3.100=h7b6447c_0
  • lcms2=2.12=h3be6417_0
  • ld_impl_linux-64=2.35.1=h7274673_9
  • libffi=3.3=he6710b0_2
  • libgcc-ng=9.1.0=hdf63c60_0
  • libiconv=1.15=h63c8f33_5
  • libidn2=2.3.2=h7f8727e_0
  • libpng=1.6.37=hbc83047_0
  • libstdcxx-ng=9.1.0=hdf63c60_0
  • libtasn1=4.16.0=h27cfd23_0
  • libtiff=4.2.0=h85742a9_0
  • libunistring=0.9.10=h27cfd23_0
  • libuv=1.40.0=h7b6447c_0
  • libwebp=1.2.0=h89dd481_0
  • libwebp-base=1.2.0=h27cfd23_0
  • lz4-c=1.9.3=h295c915_1
  • mkl=2020.2=256
  • mkl-service=2.3.0=py36he8ac12f_0
  • mkl_fft=1.3.0=py36h54f3939_0
  • mkl_random=1.1.1=py36h0573a6f_0
  • ncurses=6.2=he6710b0_1
  • nettle=3.7.3=hbbd107a_1
  • ninja=1.10.2=hff7bd54_1
  • numpy=1.19.2=py36h54aff64_0
  • numpy-base=1.19.2=py36hfa32c7d_0
  • olefile=0.46=pyhd3eb1b0_0
  • openh264=2.1.0=hd408876_0
  • openssl=1.1.1l=h7f8727e_0
  • pillow=8.3.1=py36h5aabda8_0
  • pip=21.2.2=py36h06a4308_0
  • python=3.6.13=h12debd9_1

- pytorch=1.8.2=py3.6_cuda10.2_cudnn7.6.5_0

  • readline=8.1=h27cfd23_0
  • setuptools=58.0.4=py36h06a4308_0
  • six=1.16.0=pyhd3eb1b0_0
  • sqlite=3.36.0=hc218d9a_0
  • tk=8.6.10=hbc83047_0

- torchaudio=0.8.2=py36

- torchvision=0.9.2=py36_cu102

  • typing_extensions=3.10.0.2=pyh06a4308_0
  • wheel=0.37.0=pyhd3eb1b0_1
  • xz=5.2.5=h7b6447c_0
  • zlib=1.2.11=h7b6447c_3
  • zstd=1.4.9=haebb681_0
  • pip:
    • ffmpeg=4.3=hf484d3e_0
    • pytorch=1.8.2=py3.6_cuda10.2_cudnn7.6.5_0
    • torchvision=0.9.2=py36_cu102
    • torchaudio=0.8.2=py36
    • decorator==4.4.2
    • networkx==2.5.1
    • plyfile==0.7.4
    • pointnet2==0.0.0
    • protobuf==3.19.3
    • scipy==1.5.4
    • tensorboardx==2.4.1
    • trimesh==2.35.39

@sunmaosheng755
Copy link
Author

2
1

@imisra
Copy link
Contributor

imisra commented Mar 10, 2022

Hi @sunmaosheng755

Apologies for the late response. I have responded to your detailed email.

@Arielqjl
Copy link

Hi, I've got the similar performance on vanilla encoder:
====================Final Eval Numbers.
mAP0.25, mAP0.50: 61.32, 39.90
AR0.25, AR0.50: 74.54, 52.25
and masked encoder:
====================Final Eval Numbers.
mAP0.25, mAP0.50: 62.30, 43.99
AR0.25, AR0.50: 74.97, 55.70
Would you please help me reach the results of 65.0/47.0?
Thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants