-
Notifications
You must be signed in to change notification settings - Fork 84
/
PrimoToon-helpers.hlsl
196 lines (161 loc) · 9.28 KB
/
PrimoToon-helpers.hlsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/* helper functions */
// light fallback
vector<half, 4> getlightDir(){
vector<half, 4> lightDir = (_WorldSpaceLightPos0 != 0) ? _WorldSpaceLightPos0 :
vector<half, 4>(0, 0, 0, 0) + vector<half, 4>(1, 1, 0, 0);
return lightDir;
}
// map range function
float mapRange(const float min_in, const float max_in, const float min_out, const float max_out, const float value){
float slope = (max_out - min_out) / (max_in - min_in);
return min_out + slope * (value - min_in);
}
float lerpByZ(const float startScale, const float endScale, const float startZ, const float endZ, const float z){
float t = (z - startZ) / max(endZ - startZ, 0.001);
t = saturate(t);
return lerp(startScale, endScale, t);
}
// environment lighting function
vector<fixed, 4> calculateEnvLighting(vector<float, 3> vertexWSInput){
// get all the point light positions
vector<half, 3> firstPointLightPos = { unity_4LightPosX0.x, unity_4LightPosY0.x, unity_4LightPosZ0.x };
vector<half, 3> secondPointLightPos = { unity_4LightPosX0.y, unity_4LightPosY0.y, unity_4LightPosZ0.y };
vector<half, 3> thirdPointLightPos = { unity_4LightPosX0.z, unity_4LightPosY0.z, unity_4LightPosZ0.z };
vector<half, 3> fourthPointLightPos = { unity_4LightPosX0.w, unity_4LightPosY0.w, unity_4LightPosZ0.w };
// get all the point light attenuations
half firstPointLightAtten = 2 * rsqrt(unity_4LightAtten0.x);
half secondPointLightAtten = 2 * rsqrt(unity_4LightAtten0.y);
half thirdPointLightAtten = 2 * rsqrt(unity_4LightAtten0.z);
half fourthPointLightAtten = 2 * rsqrt(unity_4LightAtten0.w);
// first, get the distance between each vertex and all of the point light positions,
// then invert the result and apply attenuation, saturate to prevent my guy from glowing
// lastly, multiply it to the corresponding light's color
vector<half, 3> firstPointLight = saturate(lerp(1, 0, distance(vertexWSInput, firstPointLightPos) -
firstPointLightAtten)) * unity_LightColor[0];
vector<half, 3> secondPointLight = saturate(lerp(1, 0, distance(vertexWSInput, secondPointLightPos) -
secondPointLightAtten)) * unity_LightColor[1];
vector<half, 3> thirdPointLight = saturate(lerp(1, 0, distance(vertexWSInput, thirdPointLightPos) -
thirdPointLightAtten)) * unity_LightColor[2];
vector<half, 3> fourthPointLight = saturate(lerp(1, 0, distance(vertexWSInput, thirdPointLightPos) -
fourthPointLightAtten)) * unity_LightColor[3];
// THIS COULD USE SOME IMPROVEMENTS, I DON'T KNOW HOW TO DISABLE THIS FOR SPOT LIGHTS
// compare with all of the other point lights
vector<half, 3> pointLightCalc = firstPointLight;
pointLightCalc = max(pointLightCalc, secondPointLight);
pointLightCalc = max(pointLightCalc, thirdPointLight);
pointLightCalc = max(pointLightCalc, fourthPointLight);
// get the color of whichever's greater between the light direction and the strongest nearby point light
vector<fixed, 4> environmentLighting = max(_LightColor0, vector<fixed, 4>(pointLightCalc, 1));
// now get whichever's greater than the result of the first and the nearest light probe
vector<half, 3> ShadeSH9Alternative = vector<half, 3>(unity_SHAr.w, unity_SHAg.w, unity_SHAb.w) +
vector<half, 3>(unity_SHBr.z, unity_SHBg.z, unity_SHBb.z) / 3.0;
//environmentLighting = max(environmentLighting, vector<fixed, 4>(ShadeSH9(vector<half, 4>(0, 0, 0, 1)), 1));
environmentLighting = max(environmentLighting, vector<fixed, 4>(ShadeSH9Alternative, 1));
return environmentLighting;
}
// rim light function
vector<half, 4> calculateRimLight(const vector<float, 3> normalInput, const vector<float, 4> screenPosInput,
const float RimLightIntensityInput, const float RimLightThicknessInput,
const float factor){
// basically view-space normals, except we cannot use the normal map so get mesh's raw normals
vector<half, 3> rimNormals = UnityObjectToWorldNormal(normalInput);
rimNormals = mul(UNITY_MATRIX_V, rimNormals);
// https://github.com/TwoTailsGames/Unity-Built-in-Shaders/blob/master/CGIncludes/UnityDeferredLibrary.cginc#L152
vector<half, 2> screenPos = screenPosInput.xy / screenPosInput.w;
// sample depth texture and get it in linear form untouched
half linearDepth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, screenPos);
linearDepth = LinearEyeDepth(linearDepth);
// now we modify screenPos to offset another sampled depth texture
screenPos = screenPos + (rimNormals.x * (0.00125 * max(_ScreenParams.x *
0.00025, 1) + ((RimLightThicknessInput - 1) * 0.001)));
screenPos = screenPos + rimNormals.y * 0.001;
// sample depth texture again to another object with modified screenPos
half rimDepth = SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, screenPos);
rimDepth = LinearEyeDepth(rimDepth);
// now compare the two
half depthDiff = rimDepth - linearDepth;
// finally, le rim light :)
half rimLight = saturate(smoothstep(0, 1, depthDiff));
// creative freedom from here on
rimLight *= saturate(lerp(1, 0, linearDepth - 8));
rimLight = rimLight * max(factor * 0.2, 0.1) * RimLightIntensityInput;
return rimLight;
}
/* https://github.com/penandlim/JL-s-Unity-Blend-Modes/blob/master/John%20Lim's%20Blend%20Modes/CGIncludes/PhotoshopBlendModes.cginc */
// color dodge blend mode
vector<fixed, 3> ColorDodge(const vector<fixed, 3> s, const vector<fixed, 3> d){
return d / (1.0 - min(s, 0.999));
}
vector<fixed, 4> ColorDodge(const vector<fixed, 4> s, const vector<fixed, 4> d){
return vector<fixed, 4>(d.xyz / (1.0 - min(s.xyz, 0.999)), d.w);
}
// https://github.com/cnlohr/shadertrixx/blob/main/README.md#detecting-if-you-are-on-desktop-vr-camera-etc
bool isVR(){
// USING_STEREO_MATRICES
#if UNITY_SINGLE_PASS_STEREO
return true;
#else
return false;
#endif
}
// https://gist.github.com/Reedbeta/e8d3817e3f64bba7104b8fafd62906df
// THIS IS NOT SUPPOSED TO BE USED NORMALLY, THE ONLY REASON AS TO WHY THIS IS HERE IS BECAUSE
// MODEL RIPS CAN OCCASIONALLY BE IN .GLTF/.GLB FORMAT WHICH ENFORCES LINEAR VERTEX COLORS, WE
// CAN WORK AROUND THAT IN-SHADER THROUGH THESE FUNCTIONS
vector<float, 3> sRGBToLinear(const vector<float, 3> rgb){
// See https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
return lerp(pow((rgb + 0.055) * (1.0 / 1.055), (vector<float, 3>)2.4),
rgb * (1.0/12.92),
rgb <= (vector<float, 3>)0.04045);
}
vector<float, 3> LinearToSRGB(const vector<float, 3> rgb){
// See https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
return lerp(1.055 * pow(rgb, (vector<float, 3>)(1.0 / 2.4)) - 0.055,
rgb * 12.92,
rgb <= (vector<float, 3>)0.0031308);
}
vector<float, 4> VertexColorConvertToLinear(const vector<float, 4> input){
return vector<float, 4>(sRGBToLinear(input.xyz),
input.w); // retain alpha
}
void calculateDissolve(out vector<float, 3> input, vector<float, 2> uvs, float factor){
float buf2 = 1.0 - uvs.y;
float buf = (_DissolveDirection_Toggle != 0.0) ? buf2 : uvs.y;
buf = _WeaponDissolveValue * 2.1 + buf;
vector<float, 2> dissolveUVs = vector<float, 2>(uvs.x, buf - 1.0); // tmp1.xy
vector<fixed, 4> dissolveTex = _WeaponDissolveTex.Sample(sampler_WeaponDissolveTex, dissolveUVs);
buf = dissolveTex * 3.0 * factor;
buf = buf * 0.5 + dissolveTex.x;
input = saturate(vector<float, 3>(buf.x, dissolveTex.y, 0.0));
}
// apache license: https://gitlab.com/s-ilent/filamented/-/blob/master/Filamented/SharedFilteringLib.hlsl
vector<float, 4> cubic(float v){
vector<float, 4> n = vector<float, 4>(1.0, 2.0, 3.0, 4.0) - v;
vector<float, 4> s = n * n * n;
float x = s.x;
float y = s.y - 4.0 * s.x;
float z = s.z - 4.0 * s.y + 6.0 * s.x;
float w = 6.0 - x - y - z;
return vector<float, 4>(x, y, z, w);
}
vector<float, 4> SampleTexture2DBicubicFilter(Texture2D tex, SamplerState smp, vector<float, 2> coord, const vector<float, 4> texSize){
coord = coord * texSize.xy - 0.5;
float fx = frac(coord.x);
float fy = frac(coord.y);
coord.x -= fx;
coord.y -= fy;
vector<float, 4> xcubic = cubic(fx);
vector<float, 4> ycubic = cubic(fy);
vector<float, 4> c = vector<float, 4>(coord.x - 0.5, coord.x + 1.5, coord.y - 0.5, coord.y + 1.5);
vector<float, 4> s = vector<float, 4>(xcubic.x + xcubic.y, xcubic.z + xcubic.w, ycubic.x + ycubic.y, ycubic.z + ycubic.w);
vector<float, 4> offset = c + vector<float, 4>(xcubic.y, xcubic.w, ycubic.y, ycubic.w) / s;
vector<float, 4> sample0 = tex.Sample(smp, vector<float, 2>(offset.x, offset.z) * texSize.zw);
vector<float, 4> sample1 = tex.Sample(smp, vector<float, 2>(offset.y, offset.z) * texSize.zw);
vector<float, 4> sample2 = tex.Sample(smp, vector<float, 2>(offset.x, offset.w) * texSize.zw);
vector<float, 4> sample3 = tex.Sample(smp, vector<float, 2>(offset.y, offset.w) * texSize.zw);
float sx = s.x / (s.x + s.y);
float sy = s.z / (s.z + s.w);
return lerp(
lerp(sample3, sample2, sx),
lerp(sample1, sample0, sx), sy);
}