diff --git a/src/refiners/foundationals/latent_diffusion/stable_diffusion_1/multi_upscaler.py b/src/refiners/foundationals/latent_diffusion/stable_diffusion_1/multi_upscaler.py index 160c78df2..5f110c516 100644 --- a/src/refiners/foundationals/latent_diffusion/stable_diffusion_1/multi_upscaler.py +++ b/src/refiners/foundationals/latent_diffusion/stable_diffusion_1/multi_upscaler.py @@ -171,31 +171,18 @@ def diffuse_upscaler_target(self, x: Tensor, step: int, target: UpscalerTarget) condition_scale=target.condition_scale, ) - @staticmethod - def resize_modulo_8(image: Image.Image, size: int = 768, on_short: bool = True) -> Image.Image: - """ - Resize an image respecting the aspect ratio and ensuring the size is a multiple of 8. - - The `on_short` parameter determines whether the resizing is based on the shortest side. - """ - assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size." - side_size = min(image.size) if on_short else max(image.size) - scale = size / (side_size * 8) - new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8) - return image.resize(new_size, resample=Image.Resampling.LANCZOS) # type: ignore - - @no_grad() - def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image: + def pre_upscale(self, image: Image.Image, upscale_factor: float) -> Image.Image: """ Pre-upscale an image before the actual upscaling process. - You can override this method to implement custom pre-upscaling logic like using a ESRGAN model like in the - original implementation. + You can override this method to implement custom pre-upscaling logic + like using a ESRGAN model like in the original implementation. + The resulting image must have a width and height divisible by 8. """ return image.resize( - (int(image.width * upscale_factor), int(image.height * upscale_factor)), - resample=Image.Resampling.LANCZOS, # type: ignore + (int((image.width * upscale_factor) // 8 * 8), int((image.height * upscale_factor) // 8 * 8)), + resample=Image.Resampling.LANCZOS, ) def compute_upscaler_targets( @@ -253,7 +240,6 @@ def upscale( prompt: str = "masterpiece, best quality, highres", negative_prompt: str = "worst quality, low quality, normal quality", upscale_factor: float = 2, - downscale_size: int = 768, tile_size: tuple[int, int] = (144, 112), denoise_strength: float = 0.35, condition_scale: float = 6, @@ -276,8 +262,6 @@ def upscale( negative_prompt: The negative prompt to use for the upscaling. Original default has a weight of 2.0, but using prompt weighting is no supported yet in Refiners. upscale_factor: The factor to upscale the image by. - downscale_size: The size to downscale the image along is short side to before upscaling. Must be a - multiple of 8 because of latent compression. tile_size: The size (H, W) of the tiles to use for latent diffusion. The smaller the tile size, the more "fractal" the upscaling will be. denoise_strength: The strength of the denoising. A value of 0.0 means no denoising (so nothing happens), @@ -321,8 +305,8 @@ def upscale( clip_text_embedding = self.compute_clip_text_embedding(prompt=prompt, negative_prompt=negative_prompt) # prepare the image for the upscale - image = self.resize_modulo_8(image, size=downscale_size) image = self.pre_upscale(image, upscale_factor=upscale_factor) + assert image.width % 8 == 0 and image.height % 8 == 0, "rescaled image dimensions must be divisible by 8" # compute the latent size and tile size latent_size = Size(height=image.height // 8, width=image.width // 8)