-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides.rmarkdown
1394 lines (786 loc) · 27.6 KB
/
slides.rmarkdown
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: 'From research software engineering to data science: how technology will impact the way we research'
author:
- name: "Florencia D'Andrea, Ph.D."
affiliation: "Postdoctoral fellow at the Master of Data Science program"
institute: "University of British Columbia"
title-slide-attributes:
data-background-image: img/first-slide.png
data-background-size: contain
data-background-opacity: "0.5"
filters:
- roughnotation
format:
revealjs:
logo: img/wsu-logo.png
incremental: true # bullets one by one
smaller: true
scrollable: true
theme: custom.scss
slide-number: true
chalkboard: true
---
```{r}
library(tidyverse)
library(knitr)
library(kableExtra)
```
#### Slides
[https://www.flor14.github.io/wsu-dandrea/slides.html](https://flor14.github.io/wsu-dandrea/slides.html#/title-slide)
<br>
<br>
::: {.small-text}
<a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.
**Title slide illustration**: The Turing Way Community, & Scriberia. (2020, March 3). Illustrations from the Turing Way book dashes. Zenodo. http://doi.org/10.5281/zenodo.3695300
:::
:::footer
Click here! I can be a link!
:::
---
## Hello
#### Dr. Florencia D'Andrea
:::: {.columns}
:::{.column width="40%" #vcenter}
```{r foto, echo = FALSE, out.width=250, fig.align='center'}
knitr::include_graphics("https://res.cloudinary.com/flor/image/upload/w_1000,ar_1:1,c_fill,g_auto,e_art:hokusai/v1683580772/IMG_20220607_130734112_mu4fpd.jpg")
```
:::
:::{.column width="60%" #vcenter}
🐦 **Twitter**
[@cantoflor_87](http://twitter.com/cantoflor_87)<br>
📢 **Mastodon**
[@florencia@techhub.social](https://techhub.social/@florencia)
🌐 **Web**
[https://florenciadandrea.com](https://florenciadandrea.com)
:::
::::
---
:::: {.columns}
::: {.column width="50%" #vcenter}
lab
![](img/researchers1.png)
:::
::: {.column width="50%" #vcenter}
field work
![](img/researchers2.png)
:::
::::
# Do researchers develop [software]{.rn rn-type=circle rn-color=white}? {background-color="#E5E4E2"}
:::footer
Press R
:::
---
::: {.big-text}
*research software*
:::
Software that is used to generate, process or analyse results that you intend to appear in a publication
Research software can be anything [from a few lines of code written by yourself, to a professionally developed software package]{.rn rn-type=highlight rn-multiline=true}
:::footer
Press R
- [Hettrick *et al.* (2014) UK Research Software Survey 2014. Zenodo](https://doi.org/10.5281/zenodo.608046)
:::
# Do researchers develop [software]{.rn rn-type=circle rn-color=white}? {background-color="#E5E4E2"}
[Yes, they do!]{.rn rn-type=highlight rn-multiline=true}
:::footer
Press R
:::
---
## {background-image='img/back-question.png' background-size="1000px"}
::: {.fragment fragment-index=1}
**1.** Are Researchers Software Developers?
:::
::: {.fragment fragment-index=2}
**2.** Why is it important to write "good software" in research?
:::
::: {.fragment fragment-index=3}
**3.** What kind of practices and/or tools we need to apply for creating better research software?
- Examples
:::
---
## {background-image='img/back-question.png' background-size="1000px"}
::: {.fragment fragment-index=1}
**4.** We don't have training !
Where to find resources to learn?
:::
::: {.fragment fragment-index=2}
**5.** Where can I find other researchers interested in software?
:::
::: {.fragment fragment-index=3}
**6.** Career paths
- Survey results
:::
::: {.fragment fragment-index=4}
**Final comments**
:::
# Are Researchers Software Developers? {background-color="#67032F"}
Scientists can create software as part of their research
::: {.sectionhead}
1 [2 3 4 5 6]{style="opacity:0.25"}
:::
---
### Software quality can affect research results
:::: {.columns}
::: {.column width="60%" #vcenter}
![](img/bettersoftware.png)
:::
::: {.column width="40%" #vcenter}
What are the potential consequences of developing bad quality software?
:::
::::
:::footer
Logo: [https://www.software.ac.uk/about](https://www.software.ac.uk/about)
:::
---
## Reproducibility crisis
:::: {.columns}
::: {.column width="50%" #vcenter}
![](img/rep-crisis.png)
:::
::: {.column width="50%" #vcenter}
Code unavailable is **one** of the reasons why researchers can't reproduce their articles
:::
::::
:::footer
[Baker, M (2016) 1,500 scientists lift the lid on reproducibility - Nature](https://www.nature.com/articles/533452a)
:::
---
## Reproducibility
![](img/reproducible-matrix.jpg){width=50%}
::: footer
[Definitions - The Turing Way Handbook](https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html)
:::
---
A result is reproducible when the *same* analysis steps performed on the *same* dataset consistently produces the *same* answer
![](img/reproducible-definition-grid.png){fig-align='center'}
::: footer
[The Turing Way project illustration by Scriberia. Used under a CC-BY 4.0 licence.](DOI: 10.5281/zenodo.3332807)
:::
---
### Reproducibility
:::: {.columns}
::: {.column width="60%" #vcenter}
![](img/research-group.png)
:::
::: {.column width="40%" #vcenter}
- **Empirical**
- **Statistical**
- [**Computational**]{.rn}
:::
::::
:::footer
Press R
- [Victoria Stodden (2014) What scientific idea is ready for retirement? - www.edge.org]( https://www.edge.org/response-detail/25340)
:::
---
::: {.big-text-long}
*Computational reproducibility*
:::
When detailed information is provided about code, software, hardware and implementation details.
![](img/computer.png){fig-align="center"}
:::footer
Victoria Stodden (2014) [What scientific idea is ready for retirement? - www.edge.org]( https://www.edge.org/response-detail/25340)
:::
# Why is it important to write "good software" in research? {background-color="#67032F"}
The more detailed information is provided about the software we create, the more likely it is to reproduce research results using it
::: {.sectionhead}
[1]{style="opacity:0.25"} 2 [3 4 5 6]{style="opacity:0.25"}
:::
---
## Example
:::: {.columns}
::: {.column width="40%" #vcenter}
**Situation 1**
Julia wants to share R code with her supervisor
:::
::: {.column width="60%" #vcenter}
![](img/researcher3.png)
:::
::::
---
#### Plot's code
Julia is running this code on her computer ✅
```{r plot}
#| echo: true
#| code-fold: true
#| code-summary: "Show the code"
library(readr)
library(tidyr)
library(ggplot2)
coffee_data <- read_csv("data/coffee_data.csv")
coffee_data |>
pivot_longer(cols=aroma:moisture,
names_to="caracteristicas_cafe",
values_to="value") |>
ggplot(aes(value, total_cup_points)) +
geom_smooth(method= "gam", span=0.3, color='purple') +
facet_wrap(~caracteristicas_cafe, scale="free_y")
```
---
## But!
### Her supervisor gets an error ❌
```r
Error in pivot_longer(.,
cols = aroma:moisture,
names_to = "types_coffe",
: could not find function "pivot_longer"
```
🤔 **What could be going on?**
---
## New package version
Code that is running in your computer now [**may not work** anymore if you upgrade the packages!]{.rn rn-type=underline rn-color=orange}
* `tidyr` package version `0.8.3` does not include `pivot_longer()`
* This functions was added in `tidyr` version `1.0.0`
:::footer
[`tidyr` package - releases](https://github.com/tidyverse/tidyr/releases?page=2)
:::
---
::: {.big-text}
*Computational environment*
:::
Characteristics of a 💻 that can affect the behavior of the work done on it, such as:
* your **operating system**
* what **software** do you have installed
* software **package versions** are installed
:::footer
[The Turing Way: A Handbook for Reproducible Data Science (2019)](https://the-turing-way.netlify.app/)
:::
---
## Computational environments
Important to capture them to avoid:
* [Problems when sharing your code]{.rn}
* That you code breaks with time
```{r error, echo = FALSE, out.width=600, fig.align='center'}
knitr::include_graphics("img/ErrorManagement.jpg")
```
:::footer
Press R - [The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300)]
:::
---
## The sleight-of-hand trick that can simplify scientific computing
:::: {.columns}
::: {.column width="50%" #vcenter}
Computational environments and the tools to manage them can help researchers to deliver code that is reproducible, documented and shareable.
:::
::: {.column width="50%"}
![](img/enviroment-nature.webp)
:::
::::
:::footer
[Perkel, J. (2023) The sleight-of-hand trick that can simplify scientific computing - Nature Article](https://www.nature.com/articles/d41586-023-01469-0)
:::
---
## Situation 1-bis
:::: {.columns}
::: {.column width="40%" #vcenter}
Julia wants to run the code 10 years later
:::
::: {.column width="60%" #vcenter}
![](img/researcher3.png)
:::
::::
---
## Challenge to scientists: does your ten-year-old code still run?
:::: {.columns}
::: {.column width="50%"}
![](img/failed-2.webp)
:::
::: {.column width="50%"}
'Missing documentation and obsolete environments force participants in the Ten Years Reproducibility Challenge to get creative.'
:::
::::
:::footer
[Perkel, J. (2020) Challenge to scientists: does your ten-year-old code still run? - Nature Article](https://www.nature.com/articles/d41586-020-02462-7)
:::
---
## Computational environments
Important to capture them to avoid:
* Problems when sharing your code
* [That you code breaks with time]{.rn}
```{r error2, echo = FALSE, out.width=600, fig.align='center'}
knitr::include_graphics("img/ErrorManagement.jpg")
```
:::footer
Press R - [The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300)
:::
---
## How to avoid getting this error?
Minimum: Documentation
```{r session, echo=TRUE}
sessionInfo()
```
---
## Tools for reproducibility
We can use different tools to ensure the reproducibility of a project such as:
![](img/rep-tools.png){fig-align='center'}
# Capturing the computational environment is needed to ensure code reproducibility {background-color="#E5E4E2"}
---
## Situation 2
:::: {.columns}
::: {.column width="60%" #vcenter}
Julia is writing code for an article. **What is the best way to share the code with other colleagues?**
:::
::: {.column width="40%" #vcenter}
![](img/researcher3.png)
:::
::::
---
:::: {.columns}
::: {.column width="50%" #vcenter}
**Git**
A version control system
![](img/git-logo.png){width=250}
:::
::: {.column width="50%" #vcenter}
**GitHub**
Repository hosting service
![](img/github-logo.png){width=300}
:::
::::
:::footer
[Git logo](https://git-scm.com/downloads/logos)
:::
---
```{r comic, echo = FALSE, out.width=500, fig.align='center'}
knitr::include_graphics("img/vc-final-comic.png")
```
::: footer
[“Piled Higher and Deeper” by Jorge Cham](http://www.phdcomics.com)
:::
---
## Why Git + GitHub is the best way to share code?
:::: {.columns}
::: {.column width="40%" #vcenter}
![](img/project-history.svg)
:::
::: {.column width="60%" #vcenter}
- It's possible to assign names to each **code version** and revisit specific points in its history.
- Your code is **backed up online** on GitHub.
- It is easy to track the **authorship** of each change made
:::
::::
:::footer
[The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300) - [Example repository](https://github.com/tidyverse/tidyr)
:::
---
## Why Git + GitHub is the best way to share code?
:::: {.columns}
::: {.column width="50%" #vcenter}
![](img/pullrequest.jpg)
:::
::: {.column width="50%" #vcenter}
- You can share your code as an **open source project**
- Foster **collaboration**
- pull requests
- project boards
- github issues
:::
::::
:::footer
[The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300) - [Example 2](https://github.com/flor14/wsu-dandrea/issues/1)
:::
---
![](img/openresearch.png){fig-align="center"}
::: footer
[How to Run Your Open Source Software Project - The Turing Way Handbook](https://the-turing-way.netlify.app/reproducible-research/open/open-source.html#how-to-run-your-open-source-software-project) - [The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300)
:::
---
#### Many research groups have their GitHub organizations online
![](img/github-lab.png)
:::footer
https://github.com/dib-lab
:::
# Git + GitHub provide much more than just version control. They can also be used to foster collaboration and publish code. {background-color="#E5E4E2"}
---
## Situation 3
:::: {.columns}
::: {.column width="60%" #vcenter}
Julia wants to publish her first article. **How can she do it in a reproducible way?**
:::
::: {.column width="40%" #vcenter}
![](img/researcher4.png)
:::
::::
---
## Research Compendia
:::: {.columns}
::: {.column width="50%" #vcenter}
1. **Organize files** according to a prevailing convention.
2. Provide **separation between data, methods and results** expressing the relationship between the three.
3. Specify the **environment**
:::
::: {.column width="40%" #vcenter}
```{r rc3, echo = FALSE, out.width = 400}
knitr::include_graphics("img/ResearchCompendium.jpg")
```
:::
::::
:::footer
[`rrtools` package](https://github.com/benmarwick/rrtools) - [Research Compendia - The Turing Way: A Handbook for Reproducible Data Science (2019)](https://the-turing-way.netlify.app/reproducible-research/compendia.html?highlight=research%20compendium)
:::
---
## Documentation
Did you ever consider that your next scientific article **can have not only readers but also users**?
<br>
:::{.text-c}
[Readers]{.rn rn-type=crossed-off rn-color=purple}
[Users]{.rn rn-type=circle rn-color=green}
:::
:::footer
Press R
:::
# Project organization and documentation are also relevant to achieving computational reproducibility. {background-color="#E5E4E2"}
---
## Other practices
- Testing
- Continuous integration / development (ci - cd)
- Package development
- Code review
- Basic computational practices
- Automation / use of pipelines
---
## High reproducibility doesn't mean that things couldn't fail
#### What happens when the technology fails?
```{r notfound, echo = FALSE, out.width=600, fig.align='center'}
knitr::include_graphics("img/links.png")
```
---
## Some factors affecting **Reproducibility**
- The tools that ensure the reproducibility (Docker, Conda) could change with time
- The software/hardware we use change with time
---
## Some factors affecting **Reproducibility**
#### How the tools that ensure the reproducibility (Docker, Conda) change with time
**Example 1** - [Inactive Image Retention Policy (Nov 1, 2020)](https://github.com/docker/roadmap/issues/152): DockerHub removing Docker images in free accounts after 6 months
![](img/broken.png)
---
## Some factors affecting **Reproducibility**
#### The software/hardware we use change with time
**Example 2** - Mac M1 - Apple silicon chip (hardware) (Oct 2021)
Docker issues
![](img/blog-docker.png){fig.align:'center'}
:::footer
[Image extracted from: Docker: comstrek/air doesn’t supported linux/arm64 in golang with Macbook M1](https://kecci.medium.com/docker-comstrek-air-not-supported-linux-arm64-in-golang-with-macbook-m1-solved-f7997bd54ee)
:::
---
## Software mantainance
Should our code have **maintainers**?
```{r FixingLinks, echo = FALSE, fig.align='center', out.width=600}
knitr::include_graphics("img/FixingLinks.jpg")
```
:::footer
[Maintainers and Reviewers on GitHub](https://the-turing-way.netlify.app/collaboration/maintain-review.html) - [The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300)
:::
# What kind of practices and/or tools we need to apply for creating better research software? {background-color="#67032F"}
- Capturing computational environments.
- Version controlling and publishing our code.
::: {.sectionhead}
[1 2]{style="opacity:0.25"} 3 [4 5 6]{style="opacity:0.25"}
:::
# What kind of practices and/or tools we need to apply for creating better research software? {background-color="#67032F"}
- Document the code for your users.
- Software could need maintenance.
::: {.sectionhead}
[1 2]{style="opacity:0.25"} 3 [4 5 6]{style="opacity:0.25"}
:::
---
### Ok, but I need a second career to learn all this!
![](https://media.giphy.com/media/26BGIqWh2R1fi6JDa/giphy.gif){fig-align="center"}
:::footer
[Wilson *et al.* (2017) Good enough practices in scientific computing. PLOS Computational Biology 13(6): e1005510](https://doi.org/10.1371/journal.pcbi.1005510)
:::
---
"As researchers are under [immense pressure to maintain expertise in their research domains]{.rn rn-type=underline rn-color=orange}, they have little time to stay current with the latest software engineering practices (...) The lack of career incentives has occurred partially because the academic environment and culture have developed over hundreds of years, while [software has only recently become important, in some fields over the last 60+ years, but in many others, just in the last 20 or fewer years ]{.rn rn-type=highlight rn-multiline=true} (Foster, 2006)."
:::footer
Press R - [Carver *et al.* (2022) A survey of the state of the practice for research software in the United States](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138129/)
:::
---
## There are many communities that can help to improve research software
- ReproHack
- The Turing Way
- `ROpenSci` / `pyOpenSci`
- The Carpentries
---
## 1. Reprohack
#### Reproducibility hackathons
:::: {.columns}
:::{.column width="70%"}
**Authors**: Send their papers with *publicly available associated code and data*
**Participants**: Attempt to *reproduce published research* of their choice from a list of proposed papers
At the end, the participants give *feedback* to the authors
:::
:::{.column width="30%"}
```{r circulo2, echo = FALSE, out.width=300, fig.align = "center"}
knitr::include_graphics("img/reprohack.png")
```
:::
::::
:::footer
[Reprohack website](https://www.reprohack.org/)
:::
---
## 2. The Turing Way project
::::{.columns}
:::{.column width="60%" #vcenter}
The TWP involve and support a diverse community of contributors to make data science accessible, comprehensible and effective for everyone.
**Book**
[The Turing Way Handbook (2022)](https://the-turing-way.netlify.app/index.html)
:::
:::{.column width="40%" #vcenter}
![](img/road-to-reproducibility.svg)
:::
::::
:::footer
Image: [The Turing Way Community, & Scriberia. (2020)](http://doi.org/10.5281/zenodo.3695300)
:::
---
## 3. rOpenSci / pyOpenSci
::::{.columns}
:::{.column width="70%"}
**Scientific package review process**
- [PyOpenSci webpage](https://www.pyopensci.org/about-peer-review/)
- [rOpenSci webpage](https://ropensci.org/software-review/)
- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/preface.html)
:::
:::{.column width="30%"}
::: {layout-nrow=2}
![](img/ropensci.svg)
![](img/pyopensci.png)
:::
:::
::::
---
## Software Carpentry
::::{.columns}
:::{.column width="50%" #vcenter}
![](img/thecarpentries.png)
:::
:::{.column width="50%" #vcenter}
**Lessons and infrastructure to teach them**
[The Carpentry lessons](https://software-carpentry.org/) in Unix, python, R and more
:::
::::
::: footer
[The Carpentries](https://carpentries.org)
:::
# We don't have training! Where to find resources to learn? {background-color="#67032F"}
There are many communities that can help researchers to learn how to improve their software
::: {.sectionhead}
[1 2 3]{style="opacity:0.25"} 4 [5 6]{style="opacity:0.25"}
:::
---
## Why is there no career for software developers in academia?
- In 2012, the Software Sustainability Institute (SSI) organized the [Collaborations Workshop](http://software.ac.uk/cw12) that addressed this question.
- Foundation of the UK RSE association, and later to the **Society of Research Software Engineering**
---