Skip to content

Latest commit

 

History

History
204 lines (137 loc) · 23.4 KB

File metadata and controls

204 lines (137 loc) · 23.4 KB

Machine Learning Specialization Coursera

Contains Solutions and Notes for the Machine Learning Specialization by Andrew NG on Coursera

Note : If you would like to have a deeper understanding of the concepts by understanding all the math required, have a look at Mathematics for Machine Learning and Data Science














Stargazers over time

Stargazers over time

Hits

Course Review :

This Course is a best place towards becoming a Machine Learning Engineer. Even if you're an expert, many algorithms are covered in depth such as decision trees which may help in further improvement of skills.

Special thanks to Professor Andrew Ng for structuring and tailoring this Course.



An insight of what you might be able to accomplish at the end of this specialization :

  • Write an unsupervised learning algorithm to Land the Lunar Lander Using Deep Q-Learning

    • The Rover was trained to land correctly on the surface, correctly between the flags as indicators after many unsuccessful attempts in learning how to do it.
    • The final landing after training the agent using appropriate parameters :
lunar_lander.mp4
  • Write an algorithm for a Movie Recommender System

    • A movie database is collected based on its genre.
    • A content based filtering and collaborative filtering algorithm is trained and the movie recommender system is implemented.
    • It gives movie recommendentations based on the movie genre.

movie_recommendation

  • And Much More !!

Concluding, this is a course which I would recommend everyone to take. Not just because you learn many new stuffs, but also the assignments are real life examples which are exciting to complete.


Happy Learning :))