Skip to content

Latest commit

 

History

History
203 lines (150 loc) · 5.78 KB

README.md

File metadata and controls

203 lines (150 loc) · 5.78 KB

Aris-AI-Model-Server

[ English | 简体中文 ]

Introduction

In AI application development, we often need to deploy multiple models to complete different tasks. For model dialogue services, we need LLM models, and for knowledge base retrieval services, we need Embedding and Reranker models. Therefore, Aris-AI-Model-Server was born, focusing on integrating multiple model services into one, providing users with simple and convenient model access capabilities. The project name comes from the character Aris in Blue Archive, as shown in the figure below:



Aris: Character from Blue Archive


Changelog

  • [2024-07-13] Aris-AI-Model-Server officially open-sourced.

  • [2024-06-23] We released the Aris-14B-Chat series models, which are based on Qwen1.5-14B-Chat and have undergone SFT and DPO on our private dataset of 140K entries. When using this model, please comply with the Qwen open-source license.

Technology Stack

Model Backend

Embedding

  • Sentence Transformers

Reranker

  • Sentence Transformers

LLM

  • VLLM
  • MLX

API Backend

  • FastAPI

API Interfaces

Route Request Method Authentication OpenAI Compatible Description
/ GET Root directory
/v1/embeddings GET Get all Embedding models
/v1/embeddings POST Call Embedding for text embedding
/v1/rerankers GET Get all Reranker models
/v1/rerankers POST Call Reranker for document reranking
/v1/models GET Get all LLMs
/v1/chat/completions POST Call LLM for dialogue generation

Project Structure

.
├── assets
│   └── 110531412.jpg
├── config # Environment variables and model configuration
│   ├── .env.template
│   └── models.yaml.template
├── dockerfile
├── main.py
├── poetry.lock
├── pyproject.toml
├── scripts # awq, gptq quantization scripts
│   ├── autoawq.py
│   ├── autoawq.sh
│   ├── autogptq.py
│   └── autogptq.sh
└── src
    ├── api # OpenAI Compatible API
    │   ├── auth
    │   │   └── bearer.py
    │   ├── model
    │   │   ├── chat_cmpl.py
    │   │   ├── embedding.py
    │   │   ├── reranker.py
    │   │   └── root.py
    │   └── router
    │       ├── __init__.py
    │       ├── root.py
    │       └── v1
    │           ├── chat_cmpl.py
    │           ├── embedding.py
    │           ├── __init__.py
    │           └── reranker.py
    ├── config
    │   ├── arg.py # Command line arguments
    │   ├── env.py # Environment variables
    │   ├── gbl.py # Global variables
    │   ├── __init__.py
    │   └── model.py # Model configuration
    ├── controller
    │   ├── controller.py # Engine controller
    │   └── __init__.py
    ├── engine # Model invocation engine
    │   ├── base.py
    │   ├── embedding.py
    │   ├── mlx.py
    │   ├── reranker.py
    │   └── vllm.py
    ├── logger # Logging library
    │   └── __init__.py
    ├── middleware # Middleware
    │   └── logger
    │       └── __init__.py
    └── utils
        ├── formatter.py # Prompt format (referenced from llama-factory implementation)
        └── template.py # Format (referenced from llama-factory implementation)

Local Deployment

Clone Repository

git clone https://github.com/hcd233/Aris-AI-Model-Server.git
cd Aris-AI-Model-Server

Create Virtual Environment (Optional)

This step is optional, but ensure your Python environment is 3.11

conda create -n aris python=3.11.0
conda activate aris

Install Dependencies

Install poetry

pip install poetry

Install Dependencies Based on Requirements

Dependency Description Command
base Install basic dependencies for API startup poetry install
reranker Install dependencies for deploying reranker models {{base}} + -E reranker
embedding Install dependencies for deploying embedding models {{base}} + -E embedding
vllm Install dependencies for vllm backend {{base}} + -E vllm
mlx Install dependencies for mlx backend {{base}} + -E mlx
awq Install dependencies for awq quantization {{base}} + -E awq
gptq Install dependencies for gptq quantization {{base}} + -E gptq

Example: If you want to deploy an embedding model, use awq quantization, and deploy models with vllm, execute the following command to install dependencies:

poetry install -E embedding -E awq -E vllm

Configure model.yaml and .env (Omitted)

Please refer to the template files for specific modifications

cp config/models.yaml.template models.yaml
cp config/.env.template .env

Start API

python main.py --config_path models.yaml

Model Quantization

awq

bash scripts/autoawq.sh

gptq

bash scripts/autogptq.sh

Docker Deployment

Not available yet

Project Outlook

Goals

  1. Architecture division: Expand from single-machine version to kubernetes-based distributed version
  2. Enrich backends: Support more model backends, such as Triton, ONNX, etc.

Author Status

Due to busy work, project progress may be slow, updates will be occasional. PRs and Issues are welcome.