forked from leosampaio/sketchformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate-metrics.py
64 lines (53 loc) · 2.54 KB
/
evaluate-metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import metrics
import argparse
import pprint
import utils
import models
import dataloaders
def main():
parser = argparse.ArgumentParser(
description='Train modified transformer with sketch data')
parser.add_argument("model_name", default=None, help="Model that we are going to train")
parser.add_argument("--id", default="0", help="experiment signature")
parser.add_argument("--data-loader", default='stroke3-distributed',
help="Data loader that will provide data for model")
parser.add_argument("--dataset", default=None, help="Input data folder")
parser.add_argument("-o", "--output-dir", default="", help="output directory")
parser.add_argument('-p', "--hparams", default=None,
help="Parameters to override")
parser.add_argument("-g", "--gpu", default=0, type=int, nargs='+', help="GPU ID to run on", )
parser.add_argument('--metrics', type=str, nargs='+',
help="selection of metrics you want to calculate")
parser.add_argument("--help-hps", action="store_true",
help="Prints out the hparams file")
parser.add_argument("-r", "--resume", default='latest', help="One of 'latest' or a checkpoint name")
args = parser.parse_args()
# get our model and data loader classes
Model = models.get_model_by_name(args.model_name)
DataLoader = dataloaders.get_dataloader_by_name(args.data_loader)
# load the config
hps = utils.hparams.combine_hparams_into_one(Model.default_hparams(),
DataLoader.default_hparams())
utils.hparams.load_config(hps, Model.get_config_filepath(args.output_dir, args.id))
# check for help screams from the void
if args.help_hps:
combined_hps = pprint.pformat(hps.values())
print("\nLoaded parameters from {}: \n{}\n\n".format(
args.model_dir, combined_hps))
return
# optional override of parameters
if args.hparams:
hps.parse(args.hparams)
# build model, load checkpoints
utils.gpu.setup_gpu(args.gpu)
dataset = DataLoader(hps, args.dataset)
model = Model(hps, dataset, args.output_dir, args.id)
model.restore_checkpoint_if_exists(args.resume)
# compute and send metrics
metric_names = args.metrics
metrics_list = {m: metrics.build_metric_by_name(m, hps.values()) for m in metric_names}
model.compute_metrics_from(metrics_list)
model.plot_and_send_notification_for(metrics_list)
model.clean_up_tmp_dir()
if __name__ == '__main__':
main()