-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_meta.py
320 lines (277 loc) · 15.3 KB
/
train_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
import torch.utils.data.distributed
import argparse
import os
import json
from models.StyleSpeech import StyleSpeech
from models.Discriminators import Discriminator
from dataloader import prepare_dataloader
from optimizer import ScheduledOptim
from evaluate import evaluate
import utils
def load_checkpoint(checkpoint_path, model, discriminator, G_optim, D_optim, rank, distributed=False):
assert os.path.isfile(checkpoint_path)
print("Starting model from checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cuda:{}'.format(rank))
if 'model' in checkpoint_dict:
if distributed:
state_dict = {}
for k,v in checkpoint_dict['model'].items():
state_dict['module.{}'.format(k)] = v
model.load_state_dict(state_dict)
else:
model.load_state_dict(checkpoint_dict['model'])
print('Model is loaded!')
if 'discriminator' in checkpoint_dict:
if distributed:
state_dict = {}
for k,v in checkpoint_dict['discriminator'].items():
state_dict['module.{}'.format(k)] = v
discriminator.load_state_dict(state_dict)
else:
discriminator.load_state_dict(checkpoint_dict['discriminator'])
print('Discriminator is loaded!')
if 'G_optim' in checkpoint_dict or 'optimizer' in checkpoint_dict:
if 'optimizer' in checkpoint_dict:
G_optim.load_state_dict(checkpoint_dict['optimizer'])
if 'G_optim' in checkpoint_dict:
G_optim.load_state_dict(checkpoint_dict['G_optim'])
print('G_optim is loaded!')
if 'D_optim' in checkpoint_dict:
D_optim.load_state_dict(checkpoint_dict['D_optim'])
print('D_optim is loaded!')
current_step = checkpoint_dict['step'] + 1
del checkpoint_dict
return model, discriminator, G_optim, D_optim, current_step
def main(rank, args, c):
print('Use GPU: {} for training'.format(rank))
ngpus = args.ngpus
if args.distributed:
torch.cuda.set_device(rank % ngpus)
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=rank)
# Define model & loss
model = StyleSpeech(c).cuda()
discriminator = Discriminator(c).cuda()
num_param = utils.get_param_num(model)
D_num_param = utils.get_param_num(discriminator)
if rank==0:
print('Number of Meta-StyleSpeech Parameters:', num_param)
print('Number of Discriminator Parameters:', D_num_param)
with open(os.path.join(args.save_path, "model.txt"), "w") as f_log:
f_log.write(str(model))
f_log.write(str(discriminator))
print("Model Has Been Defined")
model_without_ddp = model
discriminator_without_ddp = discriminator
if args.distributed:
c.meta_batch_size = c.meta_batch_size // ngpus
model = nn.parallel.DistributedDataParallel(model, device_ids=[rank])
model_without_ddp = model.module
discriminator = nn.parallel.DistributedDataParallel(discriminator, device_ids=[rank])
discriminator_without_ddp = discriminator.module
# Optimizer
G_optim = torch.optim.Adam(model.parameters(), betas=c.betas, eps=c.eps)
D_optim = torch.optim.Adam(discriminator.parameters(), lr=2e-4, betas=c.betas, eps=c.eps)
# Loss
Loss = model_without_ddp.get_criterion()
adversarial_loss = discriminator_without_ddp.get_criterion()
print("Optimizer and Loss Function Defined.")
# Get dataset
data_loader = prepare_dataloader(args.data_path, "train.txt", batch_size=c.meta_batch_size, meta_learning=True, seed=rank)
print("Data Loader is Prepared")
# Load checkpoint if exists
if args.checkpoint_path is not None:
assert os.path.exists(args.checkpoint_path)
model, discriminator, G_optim, D_optim, current_step = load_checkpoint(
args.checkpoint_path, model, discriminator, G_optim, D_optim, rank, args.distributed)
print("\n---Model Restored at Step {}---\n".format(current_step))
else:
print("\n---Start New Training---\n")
current_step = 0
if rank == 0:
checkpoint_path = os.path.join(args.save_path, 'ckpt')
os.makedirs(checkpoint_path, exist_ok=True)
# scheduled optimizer
G_optim = ScheduledOptim(G_optim, c.decoder_hidden, c.n_warm_up_step, current_step)
# Init logger
if rank == 0:
log_path = os.path.join(args.save_path, 'log')
logger = SummaryWriter(os.path.join(log_path, 'board'))
with open(os.path.join(log_path, "log.txt"), "a") as f_log:
f_log.write("Dataset :{}\n Number of Parameters: {}\n".format(c.dataset, num_param))
# Init synthesis directory
if rank == 0:
synth_path = os.path.join(args.save_path, 'synth')
os.makedirs(synth_path, exist_ok=True)
model.train()
while current_step < args.max_iter:
# Get Training Loader
for idx, batch in enumerate(data_loader):
if current_step == args.max_iter:
break
losses = {}
#### Generator ####
G_optim.zero_grad()
# Get Support Data
sid, text, mel_target, D, log_D, f0, energy, \
src_len, mel_len, max_src_len, max_mel_len = model_without_ddp.parse_batch(batch)
# Support Forward
mel_output, src_output, style_vector, log_duration_output, f0_output, energy_output, src_mask, mel_mask, _ = model(
text, src_len, mel_target, mel_len, D, f0, energy, max_src_len, max_mel_len)
src_target, _, _ = model_without_ddp.variance_adaptor.length_regulator(src_output, D)
# Reconstruction loss
mel_loss, d_loss, f_loss, e_loss = Loss(mel_output, mel_target,
log_duration_output, log_D, f0_output, f0, energy_output, energy, src_len, mel_len)
losses['G_recon'] = mel_loss
losses['d_loss'] = d_loss
losses['f_loss'] = f_loss
losses['e_loss'] = e_loss
#### META LEARNING ####
# Get query text
B = mel_target.shape[0]
perm_idx = torch.randperm(B)
q_text, q_src_len = text[perm_idx], src_len[perm_idx]
# Generate query speech
q_mel_output, q_src_output, q_log_duration_output, \
_, _, q_src_mask, q_mel_mask, q_mel_len = model_without_ddp.inference(style_vector, q_text, q_src_len)
# Legulate length of query src
q_duration_rounded = torch.clamp(torch.round(torch.exp(q_log_duration_output.detach())-1.), min=0)
q_duration = q_duration_rounded.masked_fill(q_src_mask, 0).long()
q_src, _, _ = model_without_ddp.variance_adaptor.length_regulator(q_src_output, q_duration)
# Adverserial loss
t_val, s_val, _= discriminator(q_mel_output, q_src, None, sid, q_mel_mask)
losses['G_GAN_query_t'] = adversarial_loss(t_val, is_real=True)
losses['G_GAN_query_s'] = adversarial_loss(s_val, is_real=True)
# Total generator loss
alpha = 10.0
G_loss = alpha*losses['G_recon'] + losses['d_loss'] + losses['f_loss'] + losses['e_loss'] + \
losses['G_GAN_query_t'] + losses['G_GAN_query_s']
# Backward loss
G_loss.backward()
# Update weights
G_optim.step_and_update_lr()
#### Discriminator ####
D_optim.zero_grad()
# Real
real_t_pred, real_s_pred, cls_loss = discriminator(
mel_target, src_target.detach(), style_vector.detach(), sid, mask=mel_mask)
# Fake
fake_t_pred, fake_s_pred, _ = discriminator(
q_mel_output.detach(), q_src.detach(), None, sid, mask=q_mel_mask)
losses['D_t_loss'] = adversarial_loss(real_t_pred, is_real=True) + adversarial_loss(fake_t_pred, is_real=False)
losses['D_s_loss'] = adversarial_loss(real_s_pred, is_real=True) + adversarial_loss(fake_s_pred, is_real=False)
losses['cls_loss'] = cls_loss
# Total discriminator Loss
D_loss = losses['D_t_loss'] + losses['D_s_loss'] + losses['cls_loss']
# Backward
D_loss.backward()
# Update weights
D_optim.step()
# Print log
if current_step % args.log_step == 0 and current_step != 0 and rank == 0 :
m_l = losses['G_recon'].item()
d_l = losses['d_loss'].item()
f_l = losses['f_loss'].item()
e_l = losses['e_loss'].item()
g_t_l = losses['G_GAN_query_t'].item()
g_s_l = losses['G_GAN_query_s'].item()
d_t_l = losses['D_t_loss'].item() / 2
d_s_l = losses['D_s_loss'].item() / 2
cls_l = losses['cls_loss'].item()
str1 = "Step [{}/{}]:".format(current_step, args.max_iter)
str2 = "Mel Loss: {:.4f},\n" \
"Duration Loss: {:.4f}, F0 Loss: {:.4f}, Energy Loss: {:.4f}\n" \
"T G Loss: {:.4f}, T D Loss: {:.4f}, S G Loss: {:.4f}, S D Loss: {:.4f} \n" \
"cls_Loss: {:.4f};" \
.format(m_l, d_l, f_l, e_l, g_t_l, d_t_l, g_s_l, d_s_l, cls_l)
print(str1 + "\n" + str2 +"\n")
with open(os.path.join(log_path, "log.txt"), "a") as f_log:
f_log.write(str1 + "\n" + str2 +"\n")
logger.add_scalar('Train/mel_loss', m_l, current_step)
logger.add_scalar('Train/duration_loss', d_l, current_step)
logger.add_scalar('Train/f0_loss', f_l, current_step)
logger.add_scalar('Train/energy_loss', e_l, current_step)
logger.add_scalar('Train/G_t_loss', g_t_l, current_step)
logger.add_scalar('Train/D_t_loss', d_t_l, current_step)
logger.add_scalar('Train/G_s_loss', g_s_l, current_step)
logger.add_scalar('Train/D_s_loss', d_s_l, current_step)
logger.add_scalar('Train/cls_loss', cls_l, current_step)
# Save Checkpoint
if current_step % args.save_step == 0 and current_step != 0 and rank == 0:
torch.save({'model': model_without_ddp.state_dict(),
'discriminator': discriminator_without_ddp.state_dict(),
'G_optim': G_optim.state_dict(),'D_optim': D_optim.state_dict(),
'step': current_step},
os.path.join(checkpoint_path, 'checkpoint_{}.pth.tar'.format(current_step)))
print("*** Save Checkpoint ***")
print("Save model at step {}...\n".format(current_step))
if current_step % args.synth_step == 0 and current_step != 0 and rank == 0:
length = mel_len[0].item()
mel_target = mel_target[0, :length].detach().cpu().transpose(0, 1)
mel = mel_output[0, :length].detach().cpu().transpose(0, 1)
q_length = q_mel_len[0].item()
q_mel = q_mel_output[0, :q_length].detach().cpu().transpose(0, 1)
# plotting
utils.plot_data([q_mel.numpy(), mel.numpy(), mel_target.numpy()],
['Query Spectrogram', 'Recon Spectrogram', 'Ground-Truth Spectrogram'], filename=os.path.join(synth_path, 'step_{}.png'.format(current_step)))
print("Synth audios at step {}...\n".format(current_step))
# Evaluate
if current_step % args.eval_step == 0 and current_step != 0 and rank == 0:
model.eval()
with torch.no_grad():
m_l, d_l, f_l, e_l = evaluate(args, model_without_ddp, current_step)
str_v = "*** Validation ***\n" \
"Meta-StyleSpeech Step {},\n" \
"Mel Loss: {}\nDuration Loss:{}\nF0 Loss: {}\nEnergy Loss: {}" \
.format(current_step, m_l, d_l, f_l, e_l)
print(str_v + "\n" )
with open(os.path.join(log_path, "eval.txt"), "a") as f_log:
f_log.write(str_v + "\n")
logger.add_scalar('Validation/mel_loss', m_l, current_step)
logger.add_scalar('Validation/duration_loss', d_l, current_step)
logger.add_scalar('Validation/f0_loss', f_l, current_step)
logger.add_scalar('Validation/energy_loss', e_l, current_step)
model.train()
current_step += 1
if rank == 0:
print("Training Done at Step : {}".format(current_step))
torch.save({'model': model_without_ddp.state_dict(),
'discriminator': discriminator_without_ddp.state_dict(),
'G_optim': G_optim.state_dict(), 'D_optim': D_optim.state_dict(),
'step': current_step},
os.path.join(checkpoint_path, 'checkpoint_last_{}.pth.tar'.format(current_step)))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='dataset/LibriTTS/preprocessed')
parser.add_argument('--save_path', default='exp_meta_stylespeech')
parser.add_argument('--config', default='configs/config.json')
parser.add_argument('--max_iter', default=100000, type=int)
parser.add_argument('--save_step', default=5000, type=int)
parser.add_argument('--synth_step', default=1000, type=int)
parser.add_argument('--eval_step', default=5000, type=int)
parser.add_argument('--log_step', default=100, type=int)
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to pretrained model')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:3456', type=str, help='url for setting up distributed training')
parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int, help='distributed backend')
parser.add_argument('--dist-backend', default='nccl', type=str, help='node rank for distributed training')
args = parser.parse_args()
torch.backends.cudnn.enabled = True
with open(args.config) as f:
data = f.read()
json_config = json.loads(data)
config = utils.AttrDict(json_config)
utils.build_env(args.config, 'config.json', args.save_path)
ngpus = torch.cuda.device_count()
args.ngpus = ngpus
args.distributed = ngpus > 1
if args.distributed:
args.world_size = ngpus
mp.spawn(main, nprocs=ngpus, args=(args, config))
else:
main(0, args, config)