-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmooth_tiled_predictions.py
319 lines (270 loc) · 11.4 KB
/
smooth_tiled_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""
@author: Steven Ndungu & Hubert K
Original code is from the following source. It comes with MIT License so please mention
the original reference when sharing.
The original code has been modified to fix a couple of bugs and chunks of code
unnecessary for smooth tiling are removed.
# MIT License
# Copyright (c) 2017 Vooban Inc.
# Coded by: Guillaume Chevalier
# Source to original code and license:
# https://github.com/Vooban/Smoothly-Blend-Image-Patches
# https://github.com/Vooban/Smoothly-Blend-Image-Patches/blob/master/LICENSE
"""
"""
Perform smooth predictions on an image from tiled prediction patches.
"""
import numpy as np
import scipy.signal
from tqdm import tqdm
import gc
from tensorflow.python.util.tf_export import tf_export
# tf.autograph.set_verbosity(0)
# # Verbosity is now 0
"""
WARNING:tensorflow:AutoGraph could not transform <function refine_detections_graph.<locals>.nms_keep_map at 0x7f4224639550> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module 'gast' has no attribute 'Index'
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
Set: from tensorflow.python.util.tf_export import tf_export
"""
if __name__ == "__main__":
import matplotlib.pyplot as plt
PLOT_PROGRESS = True
# See end of file for the rest of the __main__.
else:
PLOT_PROGRESS = False
def _spline_window(window_size, power=2):
"""
Squared spline (power=2) window interpolation function:
https://www.wolframalpha.com/input/?i=y%3Dx**2,+y%3D-(x-2)**2+%2B2,+y%3D(x-4)**2,+from+y+%3D+0+to+2
"""
intersection = int(window_size / 4)
wind_outer = (abs(2 * (scipy.signal.triang(window_size))) ** power) / 2
wind_outer[intersection:-intersection] = 0
wind_inner = 1 - (abs(2 * (scipy.signal.triang(window_size) - 1)) ** power) / 2
wind_inner[:intersection] = 0
wind_inner[-intersection:] = 0
wind = wind_inner + wind_outer
wind = wind / np.average(wind)
return wind
cached_2d_windows = dict()
def _window_2D(window_size, power=2):
"""
Make a 1D window function, then infer and return a 2D window function.
Done with an augmentation, and self multiplication with its transpose.
Could be generalized to more dimensions.
"""
# Memorization
global cached_2d_windows
key = "{}_{}".format(window_size, power)
if key in cached_2d_windows:
wind = cached_2d_windows[key]
else:
wind = _spline_window(window_size, power)
wind = np.expand_dims(
np.expand_dims(wind, 1), 1
) # SREENI: Changed from 3, 3, to 1, 1
wind = wind * wind.transpose(1, 0, 2)
if PLOT_PROGRESS:
# For demo purpose, let's look once at the window:
plt.imshow(wind[:, :, 0], cmap="viridis")
plt.title(
"2D Windowing Function for a Smooth Blending of " "Overlapping Patches"
)
plt.show()
cached_2d_windows[key] = wind
return wind
def _pad_img(img, window_size, subdivisions):
"""
Add borders to img for a "valid" border pattern according to "window_size" and
"subdivisions".
Image is an np array of shape (x, y, nb_channels).
"""
aug = int(round(window_size * (1 - 1.0 / subdivisions)))
more_borders = ((aug, aug), (aug, aug), (0, 0))
ret = np.pad(img, pad_width=more_borders, mode="reflect")
# gc.collect()
if PLOT_PROGRESS:
# For demo purpose, let's look once at the window:
plt.imshow(ret)
plt.title(
"Padded Image for Using Tiled Prediction Patches\n"
"(notice the reflection effect on the padded borders)"
)
plt.show()
return ret
def _unpad_img(padded_img, window_size, subdivisions):
"""
Undo what's done in the `_pad_img` function.
Image is an np array of shape (x, y, nb_channels).
"""
aug = int(round(window_size * (1 - 1.0 / subdivisions)))
ret = padded_img[aug:-aug, aug:-aug, :]
# gc.collect()
return ret
def _rotate_mirror_do(im):
"""
Duplicate an np array (image) of shape (x, y, nb_channels) 8 times, in order
to have all the possible rotations and mirrors of that image that fits the
possible 90 degrees rotations.
It is the D_4 (D4) Dihedral group:
https://en.wikipedia.org/wiki/Dihedral_group
"""
mirrs = []
mirrs.append(np.array(im))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=1))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=2))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=3))
im = np.array(im)[:, ::-1]
mirrs.append(np.array(im))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=1))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=2))
mirrs.append(np.rot90(np.array(im), axes=(0, 1), k=3))
return mirrs
def _rotate_mirror_undo(im_mirrs):
"""
merges a list of 8 np arrays (images) of shape (x, y, nb_channels) generated
from the `_rotate_mirror_do` function. Each images might have changed and
merging them implies to rotated them back in order and average things out.
It is the D_4 (D4) Dihedral group:
https://en.wikipedia.org/wiki/Dihedral_group
"""
origs = []
origs.append(np.array(im_mirrs[0]))
origs.append(np.rot90(np.array(im_mirrs[1]), axes=(0, 1), k=3))
origs.append(np.rot90(np.array(im_mirrs[2]), axes=(0, 1), k=2))
origs.append(np.rot90(np.array(im_mirrs[3]), axes=(0, 1), k=1))
origs.append(np.array(im_mirrs[4])[:, ::-1])
origs.append(np.rot90(np.array(im_mirrs[5]), axes=(0, 1), k=3)[:, ::-1])
origs.append(np.rot90(np.array(im_mirrs[6]), axes=(0, 1), k=2)[:, ::-1])
origs.append(np.rot90(np.array(im_mirrs[7]), axes=(0, 1), k=1)[:, ::-1])
return np.mean(origs, axis=0)
def _windowed_subdivs(padded_img, window_size, subdivisions, nb_classes, pred_func):
"""
This is processed in each of 8 rotations of original image
Create tiled overlapping patches.
Returns:
5D numpy array of shape = (
nb_patches_along_X,
nb_patches_along_Y,
patches_resolution_along_X,
patches_resolution_along_Y,
nb_output_channels
)
Note:
patches_resolution_along_X == patches_resolution_along_Y == window_size
"""
WINDOW_SPLINE_2D = _window_2D(window_size=window_size, power=2)
step = int(window_size / subdivisions)
padx_len = padded_img.shape[0]
pady_len = padded_img.shape[1]
subdivs = []
for i in range(0, padx_len - window_size + 1, step):
subdivs.append([])
for j in range(
0, pady_len - window_size + 1, step
): # SREENI: Changed padx to pady (Bug in original code)
patch = padded_img[i : i + window_size, j : j + window_size, :]
subdivs[-1].append(patch)
# Here, `gc.collect()` clears RAM between operations.
# It should run faster if they are removed, if enough memory is available.
gc.collect()
subdivs = np.array(subdivs)
gc.collect()
a, b, c, d, e = subdivs.shape
subdivs = subdivs.reshape(a * b, c, d, e)
gc.collect()
subdivs = pred_func(subdivs)
gc.collect()
subdivs = np.array([patch * WINDOW_SPLINE_2D for patch in subdivs])
gc.collect()
# Such 5D array:
subdivs = subdivs.reshape(a, b, c, d, nb_classes)
gc.collect()
return subdivs
def _recreate_from_subdivs(subdivs, window_size, subdivisions, padded_out_shape):
"""
Merge tiled overlapping patches smoothly.
"""
step = int(window_size / subdivisions)
padx_len = padded_out_shape[0]
pady_len = padded_out_shape[1]
y = np.zeros(padded_out_shape)
a = 0
for i in range(0, padx_len - window_size + 1, step):
b = 0
for j in range(
0, pady_len - window_size + 1, step
): # SREENI: Changed padx to pady (Bug in original code)
windowed_patch = subdivs[a, b]
y[i : i + window_size, j : j + window_size] = (
y[i : i + window_size, j : j + window_size] + windowed_patch
)
b += 1
a += 1
return y / (subdivisions**2)
@tf_export("autograph.experimental.do_not_convert")
# @tf.autograph.experimental.do_not_convert
def predict_img_with_smooth_windowing(
input_img, window_size, subdivisions, nb_classes, pred_func
):
"""
Apply the `pred_func` function to square patches of the image, and overlap
the predictions to merge them smoothly.
See 6th, 7th and 8th idea here:
http://blog.kaggle.com/2017/05/09/dstl-satellite-imagery-competition-3rd-place-winners-interview-vladimir-sergey/
https://medium.com/kaggle-blog/dstl-satellite-imagery-competition-3rd-place-winners-interview-vladimir-sergey-85395e51e118
"""
pad = _pad_img(input_img, window_size, subdivisions)
pads = _rotate_mirror_do(pad)
# Window_size can be 1024, image size Mask-RCNN
# Note that the implementation could be more memory-efficient by merging
# the behavior of `_windowed_subdivs` and `_recreate_from_subdivs` into
# one loop doing in-place assignments to the new image matrix, rather than
# using a temporary 5D array.
# It would also be possible to allow different (and impure) window functions
# that might not tile well. Adding their weighting to another matrix could
# be done to later normalize the predictions correctly by dividing the whole
# reconstructed thing by this matrix of weightings - to normalize things
# back from an impure windowing function that would have badly weighted
# windows.
# For example, since the U-net of Kaggle's DSTL satellite imagery feature
# prediction challenge's 3rd place winners use a different window size for
# the input and output of the neural net's patches predictions, it would be
# possible to fake a full-size window which would in fact just have a narrow
# non-zero dommain. This may require to augment the `subdivisions` argument
# to 4 rather than 2.
"""
We did it in the following way:
1. Original (3600, 3600) image is rotated by 90 degrees and we get 2 images: original and rotated.
2. Both are padded.
3. Split into tiles(each padded rotation image is split into tiles and predictions are done on it)
4. We perform predictions on each tile.
5. Combine predictions back into the original size.
6. Crop padding areas.
7. Prediction of the rotated image is rotated back to the original orientation.
8. Results of the both prediction pipelines averaged with geometric mean.
"""
res = []
for pad in tqdm(pads): # 8 rotations of original image
# For every rotation:
sd = _windowed_subdivs(pad, window_size, subdivisions, nb_classes, pred_func)
one_padded_result = _recreate_from_subdivs(
sd,
window_size,
subdivisions,
padded_out_shape=list(pad.shape[:-1]) + [nb_classes],
)
res.append(one_padded_result)
# Merge after rotations: Here the 8 predicted rotations
# are merged and the mean average of them is retained
padded_results = _rotate_mirror_undo(res)
prd = _unpad_img(padded_results, window_size, subdivisions)
prd = prd[: input_img.shape[0], : input_img.shape[1], :]
if PLOT_PROGRESS:
plt.imshow(prd)
plt.title("Smoothly Merged Patches that were Tiled Tighter")
plt.show()
print("Blending Completed")
return prd