-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_plot_size_distribution.py
105 lines (86 loc) · 3.37 KB
/
test_plot_size_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Created on FEB 02/02 at Manobi Africa/ ICRISAT
@Contributors:
Pierre C. Traore - ICRISAT/ Manobi Africa
Steven Ndung'u' - ICRISAT/ Manobi Africa
Joel Nteupe - Manobi Africa
John bagiliko - ICRISAT Intern
Rosmaelle Kouemo - ICRISAT Intern
Hubert Kanyamahanga - ICRISAT/ Manobi Africa
Glorie Wowo - ICRISAT/ Manobi Africa
"""
import matplotlib.pyplot as plt
from utils.config import PROJECT_ROOT
import geopandas as gpd
# Claculating the lenth and area of polygons
# Link: https://gis.stackexchange.com/questions/287069/calculating-length-of-polygon-in-geopandas
# https://stackoverflow.com/questions/35878064/plot-two-histograms-on-the-same-graph-and-have-their-columns-sum-to-100
# Load original Image
roi_file_path = "/home/hubert/Desktop/Debi-Tiguet_v5_clean.geojson"
# Load the predicted Image
pred_file_path = (
PROJECT_ROOT + "results/Test/savedfiles/debi_tiguet_image/debi_tiguet_image.geojson"
)
original_df = gpd.read_file(roi_file_path)
pred_df = gpd.read_file(pred_file_path)
# print(original_df.shape)
# print(pred_df.shape)
# original_df['boundary'] = original_df.boundary
# original_df['centroid'] = original_df.centroid
# pred_df['boundary'] = pred_df.boundary
# pred_df['centroid'] = original_df.centroid
# gdf = original_df.set_geometry("centroid")
ECKERT_IV_PROJ4_STRING = (
"+proj=eck4 +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs"
)
original_df = original_df.to_crs(ECKERT_IV_PROJ4_STRING)
original_df["area"] = original_df["geometry"].area
# original_df.head()
pred_df = pred_df.to_crs(ECKERT_IV_PROJ4_STRING)
pred_df["area"] = pred_df["geometry"].area
# pred_df.head()
print(original_df.sort_values(by="area", ascending=False, na_position="first"))
print(pred_df.sort_values(by="area", ascending=False, na_position="first"))
# you can round the result to 2 digit by using a lambda function
# gdf['rounded_area'] = gdf['area'].apply(lambda x: round(x, 2))
# fig, ax = plt.subplots()
# ax.hist(original_df["area"], color="lightblue", label="ground truth plots", alpha=0.5)
# ax.hist(pred_df["area"], color="salmon", label="predicted plots", alpha=0.5)
# plt.legend()
# ax.set(
# title="Plots Size Distribution",
# xlabel="Area in Sqm Units",
# ylabel="# of Plots in Bin",
# )
# ax.margins(0.05)
# ax.set_ylim(bottom=0)
# plt.show()
fig, ax = plt.subplots()
ax = original_df.head(20).plot()
ax = pred_df.head(20).plot()
# ax.original_df["area"], color="lightblue", label="ground truth plots", alpha=0.5)
# ax.hist(pred_df["area"], color="salmon", label="predicted plots", alpha=0.5)
# plt.legend()
# pred_df.head(10).plot(figsize=(6, 20))
# plt.show()
# fig, ax = plt.subplots()
# ax.original_df["area"].plot()#, color="lightblue", label="ground truth plots", alpha=0.5)
# ax.pred_df["area"].plot()#, color="salmon", label="predicted plots", alpha=0.5)
# plt.legend()
# ax.set(
# title="Plots Size Distribution",
# xlabel="Area in Sqm Units",
# ylabel="# of Plots in Bin",
# )
# ax.margins(0.05)
# ax.set_ylim(bottom=0)
# plt.show()
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# set aspect to equal. This is done automatically
# when using *geopandas* plot on it's own, but not when
# working with pyplot directly.
ax.set_aspect("equal")
original_df.head(100).plot(ax=ax, color="white", edgecolor="black")
pred_df.head(100).plot(ax=ax, marker="o", color="red", markersize=5)
plt.show()