Releases: huggingface/pytorch-image-models
Releases · huggingface/pytorch-image-models
Release v0.9.10
Nov 4
- Patch fix for 0.9.9 to fix FrozenBatchnorm2d import path for old torchvision (~2 years )
Nov 3, 2023
- DFN (Data Filtering Networks) and MetaCLIP ViT weights added
- DINOv2 'register' ViT model weights added
- Add
quickgelu
ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient) - Improved typing added to ResNet, MobileNet-v3 thanks to Aryan
- ImageNet-12k fine-tuned (from LAION-2B CLIP)
convnext_xxlarge
- 0.9.9 release
Release v0.9.9
Nov 3, 2023
- DFN (Data Filtering Networks) and MetaCLIP ViT weights added
- DINOv2 'register' ViT model weights added
- Add
quickgelu
ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient) - Improved typing added to ResNet, MobileNet-v3 thanks to Aryan
- ImageNet-12k fine-tuned (from LAION-2B CLIP)
convnext_xxlarge
- 0.9.9 release
Release v0.9.8
Oct 20, 2023
- SigLIP image tower weights supported in
vision_transformer.py
.- Great potential for fine-tune and downstream feature use.
- Experimental 'register' support in vit models as per Vision Transformers Need Registers
- Updated RepViT with new weight release. Thanks wangao
- Add patch resizing support (on pretrained weight load) to Swin models
- 0.9.8 release
Release v0.9.7
Release v0.9.6
Aug 28, 2023
- Add dynamic img size support to models in
vision_transformer.py
,vision_transformer_hybrid.py
,deit.py
, andeva.py
w/o breaking backward compat.- Add
dynamic_img_size=True
to args at model creation time to allow changing the grid size (interpolate abs and/or ROPE pos embed each forward pass). - Add
dynamic_img_pad=True
to allow image sizes that aren't divisible by patch size (pad bottom right to patch size each forward pass). - Enabling either dynamic mode will break FX tracing unless PatchEmbed module added as leaf.
- Existing method of resizing position embedding by passing different
img_size
(interpolate pretrained embed weights once) on creation still works. - Existing method of changing
patch_size
(resize pretrained patch_embed weights once) on creation still works. - Example validation cmd
python validate.py /imagenet --model vit_base_patch16_224 --amp --amp-dtype bfloat16 --img-size 255 --crop-pct 1.0 --model-kwargs dynamic_img_size=True dyamic_img_pad=True
- Add
Aug 25, 2023
- Many new models since last release
- FastViT - https://arxiv.org/abs/2303.14189
- MobileOne - https://arxiv.org/abs/2206.04040
- InceptionNeXt - https://arxiv.org/abs/2303.16900
- RepGhostNet - https://arxiv.org/abs/2211.06088 (thanks https://github.com/ChengpengChen)
- GhostNetV2 - https://arxiv.org/abs/2211.12905 (thanks https://github.com/yehuitang)
- EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 (thanks https://github.com/seefun)
- EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 (thanks https://github.com/seefun)
- Add
--reparam
arg tobenchmark.py
,onnx_export.py
, andvalidate.py
to trigger layer reparameterization / fusion for models with any one ofreparameterize()
,switch_to_deploy()
orfuse()
- Including FastViT, MobileOne, RepGhostNet, EfficientViT (MSRA), RepViT, RepVGG, and LeViT
- Preparing 0.9.6 'back to school' release
Aug 11, 2023
- Swin, MaxViT, CoAtNet, and BEiT models support resizing of image/window size on creation with adaptation of pretrained weights
- Example validation cmd to test w/ non-square resize
python validate.py /imagenet --model swin_base_patch4_window7_224.ms_in22k_ft_in1k --amp --amp-dtype bfloat16 --input-size 3 256 320 --model-kwargs window_size=8,10 img_size=256,320
Release v0.9.5
Minor updates and bug fixes. New ResNeXT w/ highest ImageNet eval I'm aware of in the ResNe(X)t family (seresnextaa201d_32x8d.sw_in12k_ft_in1k_384
)
Aug 3, 2023
- Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by SeeFun
- Fix
selecsls*
model naming regression - Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize)
- v0.9.5 release prep
July 27, 2023
- Added timm trained
seresnextaa201d_32x8d.sw_in12k_ft_in1k_384
weights (and.sw_in12k
pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of. - RepViT model and weights (https://arxiv.org/abs/2307.09283) added by wangao
- I-JEPA ViT feature weights (no classifier) added by SeeFun
- SAM-ViT (segment anything) feature weights (no classifier) added by SeeFun
- Add support for alternative feat extraction methods and -ve indices to EfficientNet
- Add NAdamW optimizer
- Misc fixes
Release v0.9.2
- Fix _hub deprecation pass through import
Release v0.9.1
The first non pre-release since Oct 2022 with a long list of changes from 0.6.x releases...
May 12, 2023
- Fix Python 3.7 import error re Final[] typing annotation
May 11, 2023
timm
0.9 released, transition from 0.8.xdev releases
May 10, 2023
- Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in
timm
- DINOv2 vit feature backbone weights added thanks to Leng Yue
- FB MAE vit feature backbone weights added
- OpenCLIP DataComp-XL L/14 feat backbone weights added
- MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by Fredo Guan
- Experimental
get_intermediate_layers
function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. - Model creation throws error if
pretrained=True
and no weights exist (instead of continuing with random initialization) - Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers
- bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use
bnb
prefix, iebnbadam8bit
- Misc cleanup and fixes
- Final testing before switching to a 0.9 and bringing
timm
out of pre-release state
April 27, 2023
- 97% of
timm
models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs - Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes.
April 21, 2023
- Gradient accumulation support added to train script and tested (
--grad-accum-steps
), thanks Taeksang Kim - More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned)
- Added
--head-init-scale
and--head-init-bias
to train.py to scale classiifer head and set fixed bias for fine-tune - Remove all InplaceABN (
inplace_abn
) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly).
April 12, 2023
- Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch.
- Refactor dropout args for vit and vit-like models, separate drop_rate into
drop_rate
(classifier dropout),proj_drop_rate
(block mlp / out projections),pos_drop_rate
(position embedding drop),attn_drop_rate
(attention dropout). Also add patch dropout (FLIP) to vit and eva models. - fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable
- Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed.
April 5, 2023
- ALL ResNet models pushed to Hugging Face Hub with multi-weight support
- All past
timm
trained weights added with recipe based tags to differentiate - All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available
- Add torchvision v2 recipe weights to existing torchvision originals
- See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison
- All past
- New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models
resnetaa50d.sw_in12k_ft_in1k
- 81.7 @ 224, 82.6 @ 288resnetaa101d.sw_in12k_ft_in1k
- 83.5 @ 224, 84.1 @ 288seresnextaa101d_32x8d.sw_in12k_ft_in1k
- 86.0 @ 224, 86.5 @ 288seresnextaa101d_32x8d.sw_in12k_ft_in1k_288
- 86.5 @ 288, 86.7 @ 320
March 31, 2023
- Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models.
model | top1 | top5 | img_size | param_count | gmacs | macts |
---|---|---|---|---|---|---|
convnext_xxlarge.clip_laion2b_soup_ft_in1k | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 |
- Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks.
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k | 90.054 | 99.042 | 305.08 | 448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k | 89.946 | 99.01 | 305.08 | 448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.792 | 98.992 | 1014.45 | 560 |
eva02_large_patch14_448.mim_in22k_ft_in1k | 89.626 | 98.954 | 305.08 | 448 |
eva02_large_patch14_448.mim_m38m_ft_in1k | 89.57 | 98.918 | 305.08 | 448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.56 | 98.956 | 1013.01 | 336 |
eva_giant_patch14_336.clip_ft_in1k | 89.466 | 98.82 | 1013.01 | 336 |
eva_large_patch14_336.in22k_ft_in22k_in1k | 89.214 | 98.854 | 304.53 | 336 |
eva_giant_patch14_224.clip_ft_in1k | 88.882 | 98.678 | 1012.56 | 224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k | 88.692 | 98.722 | 87.12 | 448 |
eva_large_patch14_336.in22k_ft_in1k | 88.652 | 98.722 | 304.53 | 336 |
eva_large_patch14_196.in22k_ft_in22k_in1k | 88.592 | 98.656 | 304.14 | 196 |
eva02_base_patch14_448.mim_in22k_ft_in1k | 88.23 | 98.564 | 87.12 | 448 |
eva_large_patch14_196.in22k_ft_in1k | 87.934 | 98.504 | 304.14 | 196 |
eva02_small_patch14_336.mim_in22k_ft_in1k | 85.74 | 97.614 | 22.13 | 336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k | 80.658 | 95.524 | 5.76 | 336 |
- Multi-weight and HF hub for DeiT and MLP-Mixer based models
March 22, 2023
- More weights pushed to HF hub along with multi-weight support, including:
regnet.py
,rexnet.py
,byobnet.py
,resnetv2.py
,swin_transformer.py
,swin_transformer_v2.py
,swin_transformer_v2_cr.py
- Swin Transformer models support feature extraction (NCHW feat maps for
swinv2_cr_*
, and NHWC for all others) and spatial embedding outputs. - FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint
- RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful.
- More ImageNet-12k pretrained and 1k fine-tuned
timm
weights:rexnetr_200.sw_in12k_ft_in1k
- 82.6 @ 224, 83.2 @ 288rexnetr_300.sw_in12k_ft_in1k
- 84.0 @ 224, 84.5 @ 288regnety_120.sw_in12k_ft_in1k
- 85.0 @ 224, 85.4 @ 288regnety_160.lion_in12k_ft_in1k
- 85.6 @ 224, 86.0 @ 288regnety_160.sw_in12k_ft_in1k
- 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away)
- Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added...
- Minor bug fixes and improvements.
Feb 26, 2023
- Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see model card
- Update
convnext_xxlarge
default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) - 0.8.15dev0
Feb 20, 2023
- Add 320x320
convnext_large_mlp.clip_laion2b_ft_320
andconvnext_lage_mlp.clip_laion2b_ft_soup_320
CLIP image tower weights for features & fine-tune - 0.8.13dev0 pypi release for latest changes w/ move to huggingface org
Feb 16, 2023
safetensor
checkpoint support added- Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block
- Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to
vit_*
,vit_relpos*
,coatnet
/maxxvit
(to start) - Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675)
- gradient checkpointing works with
features_only=True
Feb 7, 2023
- New inference benchmark numbers added in results folder.
- Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes
convnext_base.clip_laion2b_augreg_ft_in1k
- 86.2% @ 256x256convnext_base.clip_laiona_augreg_ft_in1k_384
- 86.5% @ 384x384convnext_large_mlp.clip_laion2b_augreg_ft_in1k
- 87.3% @ 256x256- `co...
Release v0.9.0
First non pre-release in a loooong while, changelog from 0.6.x below...
May 11, 2023
timm
0.9 released, transition from 0.8.xdev releases
May 10, 2023
- Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in
timm
- DINOv2 vit feature backbone weights added thanks to Leng Yue
- FB MAE vit feature backbone weights added
- OpenCLIP DataComp-XL L/14 feat backbone weights added
- MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by Fredo Guan
- Experimental
get_intermediate_layers
function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. - Model creation throws error if
pretrained=True
and no weights exist (instead of continuing with random initialization) - Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers
- bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use
bnb
prefix, iebnbadam8bit
- Misc cleanup and fixes
- Final testing before switching to a 0.9 and bringing
timm
out of pre-release state
April 27, 2023
- 97% of
timm
models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs - Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes.
April 21, 2023
- Gradient accumulation support added to train script and tested (
--grad-accum-steps
), thanks Taeksang Kim - More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned)
- Added
--head-init-scale
and--head-init-bias
to train.py to scale classiifer head and set fixed bias for fine-tune - Remove all InplaceABN (
inplace_abn
) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly).
April 12, 2023
- Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch.
- Refactor dropout args for vit and vit-like models, separate drop_rate into
drop_rate
(classifier dropout),proj_drop_rate
(block mlp / out projections),pos_drop_rate
(position embedding drop),attn_drop_rate
(attention dropout). Also add patch dropout (FLIP) to vit and eva models. - fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable
- Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed.
April 5, 2023
- ALL ResNet models pushed to Hugging Face Hub with multi-weight support
- All past
timm
trained weights added with recipe based tags to differentiate - All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available
- Add torchvision v2 recipe weights to existing torchvision originals
- See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison
- All past
- New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models
resnetaa50d.sw_in12k_ft_in1k
- 81.7 @ 224, 82.6 @ 288resnetaa101d.sw_in12k_ft_in1k
- 83.5 @ 224, 84.1 @ 288seresnextaa101d_32x8d.sw_in12k_ft_in1k
- 86.0 @ 224, 86.5 @ 288seresnextaa101d_32x8d.sw_in12k_ft_in1k_288
- 86.5 @ 288, 86.7 @ 320
March 31, 2023
- Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models.
model | top1 | top5 | img_size | param_count | gmacs | macts |
---|---|---|---|---|---|---|
convnext_xxlarge.clip_laion2b_soup_ft_in1k | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 |
- Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks.
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k | 90.054 | 99.042 | 305.08 | 448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k | 89.946 | 99.01 | 305.08 | 448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.792 | 98.992 | 1014.45 | 560 |
eva02_large_patch14_448.mim_in22k_ft_in1k | 89.626 | 98.954 | 305.08 | 448 |
eva02_large_patch14_448.mim_m38m_ft_in1k | 89.57 | 98.918 | 305.08 | 448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.56 | 98.956 | 1013.01 | 336 |
eva_giant_patch14_336.clip_ft_in1k | 89.466 | 98.82 | 1013.01 | 336 |
eva_large_patch14_336.in22k_ft_in22k_in1k | 89.214 | 98.854 | 304.53 | 336 |
eva_giant_patch14_224.clip_ft_in1k | 88.882 | 98.678 | 1012.56 | 224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k | 88.692 | 98.722 | 87.12 | 448 |
eva_large_patch14_336.in22k_ft_in1k | 88.652 | 98.722 | 304.53 | 336 |
eva_large_patch14_196.in22k_ft_in22k_in1k | 88.592 | 98.656 | 304.14 | 196 |
eva02_base_patch14_448.mim_in22k_ft_in1k | 88.23 | 98.564 | 87.12 | 448 |
eva_large_patch14_196.in22k_ft_in1k | 87.934 | 98.504 | 304.14 | 196 |
eva02_small_patch14_336.mim_in22k_ft_in1k | 85.74 | 97.614 | 22.13 | 336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k | 80.658 | 95.524 | 5.76 | 336 |
- Multi-weight and HF hub for DeiT and MLP-Mixer based models
March 22, 2023
- More weights pushed to HF hub along with multi-weight support, including:
regnet.py
,rexnet.py
,byobnet.py
,resnetv2.py
,swin_transformer.py
,swin_transformer_v2.py
,swin_transformer_v2_cr.py
- Swin Transformer models support feature extraction (NCHW feat maps for
swinv2_cr_*
, and NHWC for all others) and spatial embedding outputs. - FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint
- RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful.
- More ImageNet-12k pretrained and 1k fine-tuned
timm
weights:rexnetr_200.sw_in12k_ft_in1k
- 82.6 @ 224, 83.2 @ 288rexnetr_300.sw_in12k_ft_in1k
- 84.0 @ 224, 84.5 @ 288regnety_120.sw_in12k_ft_in1k
- 85.0 @ 224, 85.4 @ 288regnety_160.lion_in12k_ft_in1k
- 85.6 @ 224, 86.0 @ 288regnety_160.sw_in12k_ft_in1k
- 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away)
- Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added...
- Minor bug fixes and improvements.
Feb 26, 2023
- Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see model card
- Update
convnext_xxlarge
default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) - 0.8.15dev0
Feb 20, 2023
- Add 320x320
convnext_large_mlp.clip_laion2b_ft_320
andconvnext_lage_mlp.clip_laion2b_ft_soup_320
CLIP image tower weights for features & fine-tune - 0.8.13dev0 pypi release for latest changes w/ move to huggingface org
Feb 16, 2023
safetensor
checkpoint support added- Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block
- Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to
vit_*
,vit_relpos*
,coatnet
/maxxvit
(to start) - Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675)
- gradient checkpointing works with
features_only=True
Feb 7, 2023
- New inference benchmark numbers added in results folder.
- Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes
convnext_base.clip_laion2b_augreg_ft_in1k
- 86.2% @ 256x256convnext_base.clip_laiona_augreg_ft_in1k_384
- 86.5% @ 384x384convnext_large_mlp.clip_laion2b_augreg_ft_in1k
- 87.3% @ 256x256convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384
- 87.9% @ 384x384
- Add DaViT models. Supports ...
Release v0.6.13
Release from 0.6.x stable branch with fix for Python 3.11. NOTE original 0.6.13 release tag was against wrong branch.