forked from fairy-stockfish/variant-nnue-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhalfka.py
71 lines (54 loc) · 2.33 KB
/
halfka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import chess
import torch
import feature_block
from collections import OrderedDict
from feature_block import *
import variant
NUM_SQ = variant.SQUARES
NUM_KSQ = variant.KING_SQUARES
NUM_PT = variant.PIECES
NUM_PLANES = (NUM_SQ * NUM_PT + 1)
def orient(is_white_pov: bool, sq: int):
return sq % variant.FILES + (variant.RANKS - 1 - (sq // variant.FILES)) * variant.FILES if not is_white_pov else sq
def halfka_idx(is_white_pov: bool, king_sq: int, sq: int, piece_type: int, color: bool):
p_idx = (piece_type - 1) * 2 + (color != is_white_pov)
return 1 + orient(is_white_pov, sq) + p_idx * NUM_SQ + king_sq * NUM_PLANES
def halfka_psqts():
values = [0] * (NUM_PLANES * NUM_SQ)
for ksq in range(NUM_KSQ):
for s in range(NUM_SQ):
for pt, val in variant.PIECE_VALUES.items():
idxw = halfka_idx(True, ksq, s, pt, chess.WHITE)
idxb = halfka_idx(True, ksq, s, pt, chess.BLACK)
values[idxw] = val
values[idxb] = -val
return values
class Features(FeatureBlock):
def __init__(self):
super(Features, self).__init__('HalfKA', 0x5f134cb8, OrderedDict([('HalfKA', NUM_PLANES * NUM_SQ)]))
def get_active_features(self, board: chess.Board):
def piece_features(turn):
indices = torch.zeros(NUM_PLANES * NUM_SQ)
for sq, p in board.piece_map().items():
indices[halfka_idx(turn, orient(turn, board.king(turn)), sq, p)] = 1.0
return indices
return (piece_features(chess.WHITE), piece_features(chess.BLACK))
def get_initial_psqt_features(self):
return halfka_psqts()
class FactorizedFeatures(FeatureBlock):
def __init__(self):
super(FactorizedFeatures, self).__init__('HalfKA^', 0x5f134cb8, OrderedDict([('HalfKA', NUM_PLANES * NUM_SQ), ('A', NUM_SQ * NUM_PT)]))
def get_active_features(self, board: chess.Board):
raise Exception('Not supported yet, you must use the c++ data loader for factorizer support during training')
def get_feature_factors(self, idx):
if idx >= self.num_real_features:
raise Exception('Feature must be real')
a_idx = idx % NUM_PLANES - 1
return [idx, self.get_factor_base_feature('A') + a_idx]
def get_initial_psqt_features(self):
return halfka_psqts() + [0] * (NUM_SQ * NUM_PT)
'''
This is used by the features module for discovery of feature blocks.
'''
def get_feature_block_clss():
return [Features, FactorizedFeatures]