-
Notifications
You must be signed in to change notification settings - Fork 0
/
OCR-face_recognition.py
111 lines (87 loc) · 3.71 KB
/
OCR-face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
''''
Real Time Face Recogition
==> Each face stored on dataset/ dir, should have a unique numeric integer ID as 1, 2, 3, etc
==> LBPH computed model (trained faces) should be on trainer/ dir
Based on original code by Anirban Kar: https://github.com/thecodacus/Face-Recognition
Developed by Marcelo Rovai - MJRoBot.org @ 21Feb18
'''
import cv2
import numpy as np
import os
import imutils
from gtts import gTTS
import pyttsx3
import datetime
from PIL import Image
from picamera import PiCamera
def faceRecog():
# Face recog
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('/home/pi/Desktop/switch/FacialRecognitionProject/trainer/trainer.yml')
cascadePath = "/home/pi/Desktop/switch/FacialRecognitionProject/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
#iniciate id counter
id = 0
# names related to ids: example ==> Marcelo: id=1, etc
names = ['None', 'ahmed', 'ibrahim', 'safi', 'najmul', 'Sakib']
# Initialize and start realtime video capture
#cam = cv2.VideoCapture(0)
# initialize the camera and grab a reference to the raw camera capture
cam = PiCamera()
cam.resolution = (1080, 720)
cam.framerate = 32
cam.rotation = 90
cam.brightness=60
#cam.set(3, 640) # set video widht
#cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*640
minH = 0.1*480
def face_recognition():
while True:
cam.capture("/home/pi/Desktop/switch/FacialRecognitionProject/face1.png")
#img = np.asarray(Image.open("/home/pi/Desktop/switch/FacialRecognitionProject/face1.png"))
#img =cam.read()
img = cv2.imread("/home/pi/Desktop/switch/FacialRecognitionProject/face1.png")
img = cv2.flip(img, -1) # Flip vertically
img=imutils.rotate(img,angle=180)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
if ((100 - confidence)>40):
id = names[id]
confidence = " {0}%".format(round(100 - confidence))
#file1 = open("MyFile.txt","a")
#file1.write("\n"+str(id)+ " at: "+str(datetime.datetime.now()))
else:
id = "unknown"
confidence = " {0}%".format(round(100 - confidence))
cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
#text2speech=gTTS(str(id),lang="en")
#text2speech.save("sample.mp3")
#os.system("mpg321 sample.mp3")
#engine = pyttsx3.init()
#engine.say("it's "+str(id))
#engine.runAndWait()
#print(str(id))
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()
face_recognition()
# End face recognition function
faceRecog()