-
Notifications
You must be signed in to change notification settings - Fork 0
/
faceRecognition.py
142 lines (114 loc) · 4.55 KB
/
faceRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from PIL import Image
from gtts import gTTS
# ocr import
import os
import pytesseract
import subprocess
from subprocess import call
import picamera
import numpy as np
import cv2
import pyttsx3
import datetime
#switch import
import RPi.GPIO as GPIO
import time
import imutils
from picamera import PiCamera
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(13, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
GPIO.setup(15, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
# Face recognition function
def faceRecog():
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('/home/pi/Desktop/switch/FacialRecognitionProject/trainer/trainer.yml')
cascadePath = "/home/pi/Desktop/switch/FacialRecognitionProject/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath);
font = cv2.FONT_HERSHEY_SIMPLEX
#iniciate id counter
id = 0
# names related to ids: example ==> Marcelo: id=1, etc
names = ['None', 'ahmed', 'ibrahim', 'safi', 'najmul', 'Sakib']
# Initialize and start realtime video capture
#cam = cv2.VideoCapture(0)
# initialize the camera and grab a reference to the raw camera capture
cam = PiCamera()
cam.resolution = (1080, 720)
cam.framerate = 32
cam.rotation = 90
cam.brightness=60
#cam.set(3, 640) # set video widht
#cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*1080
minH = 0.1*720
def speechCallName(text_str):
engine = pyttsx3.init()
engine.setProperty('voice', 'english+f3') # changes the voice
engine.setProperty('rate', 125)
engine.say(text_str)
engine.runAndWait()
def face_recognition():
while not (GPIO.input(11) or GPIO.input(13) or GPIO.input(15)):
#while True:
print("yes3")
cam.capture("/home/pi/Desktop/switch/face1.png")
#img = np.asarray(Image.open("/home/pi/Desktop/switch/FacialRecognitionProject/face1.png"))
#img =cam.read()
img = cv2.imread("/home/pi/Desktop/switch/face1.png")
img = cv2.flip(img, -1) # Flip vertically
img=imutils.rotate(img,angle=180)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
r=(2*x+w)/2
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
if ((100 - confidence)>40):
id = names[id]
confidence = " {0}%".format(round(100 - confidence))
if (r>540):
engine=pyttsx3.init()
engine.say("go left")
engine.say("it's "+str(id))
engine.runAndWait()
else:
engine=pyttsx3.init()
engine.say("go right")
engine.say("it's "+str(id))
engine.runAndWait()
#file1 = open("MyFile.txt","a")
#file1.write("\n"+str(id)+ " at: "+str(datetime.datetime.now()))
else:
id = "unknown"
confidence = " {0}%".format(round(100 - confidence))
if (r>540):
engine=pyttsx3.init()
engine.say("go left")
engine.runAndWait()
else:
engine=pyttsx3.init()
engine.say("go right")
engine.runAndWait()
cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
cv2.imshow('camera',img)
print("yes3")
#if str(id)!= "unknown":
# speechCallName(str(id))
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
face_recognition()
cam.close()
cam.release()
cv2.destroyAllWindows()
# End face recognition function
faceRecog()