-
Notifications
You must be signed in to change notification settings - Fork 671
/
gan_mnist.py
253 lines (205 loc) · 7.51 KB
/
gan_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os, sys
sys.path.append(os.getcwd())
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import sklearn.datasets
import tensorflow as tf
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.ops.deconv2d
import tflib.save_images
import tflib.mnist
import tflib.plot
MODE = 'wgan-gp' # dcgan, wgan, or wgan-gp
DIM = 64 # Model dimensionality
BATCH_SIZE = 50 # Batch size
CRITIC_ITERS = 5 # For WGAN and WGAN-GP, number of critic iters per gen iter
LAMBDA = 10 # Gradient penalty lambda hyperparameter
ITERS = 200000 # How many generator iterations to train for
OUTPUT_DIM = 784 # Number of pixels in MNIST (28*28)
lib.print_model_settings(locals().copy())
def LeakyReLU(x, alpha=0.2):
return tf.maximum(alpha*x, x)
def ReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(
name+'.Linear',
n_in,
n_out,
inputs,
initialization='he'
)
return tf.nn.relu(output)
def LeakyReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(
name+'.Linear',
n_in,
n_out,
inputs,
initialization='he'
)
return LeakyReLU(output)
def Generator(n_samples, noise=None):
if noise is None:
noise = tf.random_normal([n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, 4*4*4*DIM, noise)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Generator.BN1', [0], output)
output = tf.nn.relu(output)
output = tf.reshape(output, [-1, 4*DIM, 4, 4])
output = lib.ops.deconv2d.Deconv2D('Generator.2', 4*DIM, 2*DIM, 5, output)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Generator.BN2', [0,2,3], output)
output = tf.nn.relu(output)
output = output[:,:,:7,:7]
output = lib.ops.deconv2d.Deconv2D('Generator.3', 2*DIM, DIM, 5, output)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Generator.BN3', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.5', DIM, 1, 5, output)
output = tf.nn.sigmoid(output)
return tf.reshape(output, [-1, OUTPUT_DIM])
def Discriminator(inputs):
output = tf.reshape(inputs, [-1, 1, 28, 28])
output = lib.ops.conv2d.Conv2D('Discriminator.1',1,DIM,5,output,stride=2)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.2', DIM, 2*DIM, 5, output, stride=2)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN2', [0,2,3], output)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.3', 2*DIM, 4*DIM, 5, output, stride=2)
if MODE == 'wgan':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN3', [0,2,3], output)
output = LeakyReLU(output)
output = tf.reshape(output, [-1, 4*4*4*DIM])
output = lib.ops.linear.Linear('Discriminator.Output', 4*4*4*DIM, 1, output)
return tf.reshape(output, [-1])
real_data = tf.placeholder(tf.float32, shape=[BATCH_SIZE, OUTPUT_DIM])
fake_data = Generator(BATCH_SIZE)
disc_real = Discriminator(real_data)
disc_fake = Discriminator(fake_data)
gen_params = lib.params_with_name('Generator')
disc_params = lib.params_with_name('Discriminator')
if MODE == 'wgan':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
gen_train_op = tf.train.RMSPropOptimizer(
learning_rate=5e-5
).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.RMSPropOptimizer(
learning_rate=5e-5
).minimize(disc_cost, var_list=disc_params)
clip_ops = []
for var in lib.params_with_name('Discriminator'):
clip_bounds = [-.01, .01]
clip_ops.append(
tf.assign(
var,
tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
)
)
clip_disc_weights = tf.group(*clip_ops)
elif MODE == 'wgan-gp':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
alpha = tf.random_uniform(
shape=[BATCH_SIZE,1],
minval=0.,
maxval=1.
)
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += LAMBDA*gradient_penalty
gen_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9
).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4,
beta1=0.5,
beta2=0.9
).minimize(disc_cost, var_list=disc_params)
clip_disc_weights = None
elif MODE == 'dcgan':
gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
disc_fake,
tf.ones_like(disc_fake)
))
disc_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
disc_fake,
tf.zeros_like(disc_fake)
))
disc_cost += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
disc_real,
tf.ones_like(disc_real)
))
disc_cost /= 2.
gen_train_op = tf.train.AdamOptimizer(
learning_rate=2e-4,
beta1=0.5
).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(
learning_rate=2e-4,
beta1=0.5
).minimize(disc_cost, var_list=disc_params)
clip_disc_weights = None
# For saving samples
fixed_noise = tf.constant(np.random.normal(size=(128, 128)).astype('float32'))
fixed_noise_samples = Generator(128, noise=fixed_noise)
def generate_image(frame, true_dist):
samples = session.run(fixed_noise_samples)
lib.save_images.save_images(
samples.reshape((128, 28, 28)),
'samples_{}.png'.format(frame)
)
# Dataset iterator
train_gen, dev_gen, test_gen = lib.mnist.load(BATCH_SIZE, BATCH_SIZE)
def inf_train_gen():
while True:
for images,targets in train_gen():
yield images
# Train loop
with tf.Session() as session:
session.run(tf.initialize_all_variables())
gen = inf_train_gen()
for iteration in xrange(ITERS):
start_time = time.time()
if iteration > 0:
_ = session.run(gen_train_op)
if MODE == 'dcgan':
disc_iters = 1
else:
disc_iters = CRITIC_ITERS
for i in xrange(disc_iters):
_data = gen.next()
_disc_cost, _ = session.run(
[disc_cost, disc_train_op],
feed_dict={real_data: _data}
)
if clip_disc_weights is not None:
_ = session.run(clip_disc_weights)
lib.plot.plot('train disc cost', _disc_cost)
lib.plot.plot('time', time.time() - start_time)
# Calculate dev loss and generate samples every 100 iters
if iteration % 100 == 99:
dev_disc_costs = []
for images,_ in dev_gen():
_dev_disc_cost = session.run(
disc_cost,
feed_dict={real_data: images}
)
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot('dev disc cost', np.mean(dev_disc_costs))
generate_image(iteration, _data)
# Write logs every 100 iters
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush()
lib.plot.tick()